20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Lutein and Zeaxanthin and Their Potential Roles in Disease Prevention

      ,
      Journal of the American College of Nutrition
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lutein and zeaxanthin are xanthophyll carotenoids found particularly in dark-green leafy vegetables and in egg yolks. They are widely distributed in tissues and are the principal carotenoids in the eye lens and macular region of the retina. Epidemiologic studies indicating an inverse relationship between xanthophyll intake or status and both cataract and age-related macular degeneration suggest these compounds can play a protective role in the eye. Some observational studies have also shown these xanthophylls may help reduce the risk of certain types of cancer, particularly those of the breast and lung. Emerging studies suggest as well a potential contribution of lutein and zeaxanthin to the prevention of heart disease and stroke. Even as the evidence for a role of lutein and zeaxanthin in disease prevention continues to evolve, particularly from human studies directed to their bioavailability, metabolism, and dose-response relationships with intermediary biomarkers and clinical outcomes, it is worth noting that recommendations to consume foods rich in xanthophylls are consistent with current dietary guidelines.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: not found
          • Article: not found

          Dietary Carotenoids, Vitamins A, C, and E, and Advanced Age-Related Macular Degeneration

            • Record: found
            • Abstract: found
            • Article: not found

            Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye.

            The macular region of the primate retina is yellow in color due to the presence of the macular pigment, composed of two dietary xanthophylls, lutein and zeaxanthin, and another xanthophyll, meso-zeaxanthin. The latter is presumably formed from either lutein or zeaxanthin in the retina. By absorbing blue-light, the macular pigment protects the underlying photoreceptor cell layer from light damage, possibly initiated by the formation of reactive oxygen species during a photosensitized reaction. There is ample epidemiological evidence that the amount of macular pigment is inversely associated with the incidence of age-related macular degeneration, an irreversible process that is the major cause of blindness in the elderly. The macular pigment can be increased in primates by either increasing the intake of foods that are rich in lutein and zeaxanthin, such as dark-green leafy vegetables, or by supplementation with lutein or zeaxanthin. Although increasing the intake of lutein or zeaxanthin might prove to be protective against the development of age-related macular degeneration, a causative relationship has yet to be experimentally demonstrated.
              • Record: found
              • Abstract: found
              • Article: not found

              Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action.

              We have previously demonstrated that diverse carotenoids inhibit chemically induced neoplastic transformation in 10T1/2 cells. To address their mechanism of action, the effects of six diverse carotenoids, with or without provitamin A activity, on gap junctional communication and lipid peroxidation have been investigated. beta-Carotene, canthaxanthin, lutein, lycopene and alpha-carotene increased gap junctional intercellular communication in a dose-dependent manner in the above order of potency, whereas m-bixin was inactive at concentrations up to 10(-5) M. alpha-Tocopherol, a potent chain-breaking antioxidant, caused a marginal enhancement of junctional communication. The enhancement of junctional communication by diverse carotenoids showed a strong statistical correlation with their previously determined ability to inhibit methylcholanthrene-induced neoplastic transformation (r = -0.75). All carotenoids tested inhibited lipid peroxidation, but with differing potencies. alpha-Tocopherol was the most active inhibitor followed by m-bixin. The capacity of carotenoids or alpha-tocopherol to inhibit lipid peroxidation was neither consistent with their ability to inhibit neoplastic transformation (r = 0.30) nor to increase junctional communication (r = 0.12). Since junctional communication appears to play an important role in cell growth control and carcinogenesis, we propose that in this system carotenoid-enhanced intercellular communication provides a mechanistic basis for the cancer chemopreventive action of carotenoids. These data also imply that carotenoids function in a manner analogous to retinoids in the 10T1/2 assay system. Interestingly this activity appears independent of their provitamin A status.

                Author and article information

                Journal
                Journal of the American College of Nutrition
                Journal of the American College of Nutrition
                Informa UK Limited
                0731-5724
                1541-1087
                December 2004
                December 2004
                : 23
                : sup6
                : 567S-587S
                Article
                10.1080/07315724.2004.10719427
                15640510
                51ec1100-4f1e-443c-88b9-d2d333402a4a
                © 2004
                History

                Comments

                Comment on this article

                Related Documents Log