7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Protective effects of methyl palmitate against silica-induced pulmonary fibrosis in rats.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Silicosis is one of the most prevalent chronic occupational pulmonary diseases worldwide. The present study aimed to investigate the effects of methyl palmitate on silica-induced lung fibrosis in rats and explore the possible mechanisms. Male Sprague-Dawley rats were divided into 3 groups: group I served as control and group II served as positive control where rats were intranasally instilled with a single dose of silica suspension (50mg in 0.1ml saline/rat). Rats of group III received methyl palmitate (300mg/kg, I.P. three times per week at alternating days) for 60days after instillation of silica. At the end of the treatment period, animals were sacrificed then biochemical parameters and histopathology were assessed. Treatment with methyl palmitate attenuated silica-induced lung inflammation and fibrosis, as it significantly decreased lactate dehydrogenase (LDH) activity and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid (BALF). Methyl palmitate significantly reduced collagen deposition as indicated by a decrease in lung hydroxyproline content and marked attenuation in silica-induced lung fibrosis in histopathological results. In addition, methyl palmitate significantly increased superoxide dismutase (SOD) and reduced glutathione (GSH) activities with a significant decrease in the lung malondialdehyde (MDA) content. Methyl palmitate also reduced silica mediated overproduction of pulmonary nitrite/nitrate (NO2(-)/NO3(-)). Importantly, methyl palmitate decreased the level of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α) in the lung. Taken together, these results demonstrate the potent protective effects of methyl palmitate against silica-induced lung fibrosis. This effect can be attributed to methyl palmitate's ability to counteract the inflammatory cells' infiltration and hence reactive oxygen species (ROS) generation and regulate cytokine effects.

          Related collections

          Author and article information

          Journal
          Int. Immunopharmacol.
          International immunopharmacology
          1878-1705
          1567-5769
          Jun 2013
          : 16
          : 2
          Affiliations
          [1 ] Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
          Article
          S1567-5769(13)00143-4
          10.1016/j.intimp.2013.04.007
          23602676
          51f06568-56c8-4d76-8816-aad953840916
          Copyright © 2013 Elsevier B.V. All rights reserved.
          History

          Comments

          Comment on this article