19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular tumor profiling: translating genomic insights into clinical advances

      editorial
      1 ,
      Genome Biology
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Molecular profiling of the transcripts or proteins within an individual tumor may in future provide important prognostic and therapeutic information, but for the time being traditional genetics and pathology retain their place in the clinic.

          Abstract

          Molecular profiling of the transcripts or proteins within an individual tumor may in future provide important prognostic and therapeutic clinical information both for the affected individual and for their extended family, but for the time being traditional genetics and pathology retain their place in the clinic.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1.

          A strong candidate for the 17q-linked BRCA1 gene, which influences susceptibility to breast and ovarian cancer, has been identified by positional cloning methods. Probable predisposing mutations have been detected in five of eight kindreds presumed to segregate BRCA1 susceptibility alleles. The mutations include an 11-base pair deletion, a 1-base pair insertion, a stop codon, a missense substitution, and an inferred regulatory mutation. The BRCA1 gene is expressed in numerous tissues, including breast and ovary, and encodes a predicted protein of 1863 amino acids. This protein contains a zinc finger domain in its amino-terminal region, but is otherwise unrelated to previously described proteins. Identification of BRCA1 should facilitate early diagnosis of breast and ovarian cancer susceptibility in some individuals as well as a better understanding of breast cancer biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene-expression profiles in hereditary breast cancer.

            Many cases of hereditary breast cancer are due to mutations in either the BRCA1 or the BRCA2 gene. The histopathological changes in these cancers are often characteristic of the mutant gene. We hypothesized that the genes expressed by these two types of tumors are also distinctive, perhaps allowing us to identify cases of hereditary breast cancer on the basis of gene-expression profiles. RNA from samples of primary tumor from seven carriers of the BRCA1 mutation, seven carriers of the BRCA2 mutation, and seven patients with sporadic cases of breast cancer was compared with a microarray of 6512 complementary DNA clones of 5361 genes. Statistical analyses were used to identify a set of genes that could distinguish the BRCA1 genotype from the BRCA2 genotype. Permutation analysis of multivariate classification functions established that the gene-expression profiles of tumors with BRCA1 mutations, tumors with BRCA2 mutations, and sporadic tumors differed significantly from each other. An analysis of variance between the levels of gene expression and the genotype of the samples identified 176 genes that were differentially expressed in tumors with BRCA1 mutations and tumors with BRCA2 mutations. Given the known properties of some of the genes in this panel, our findings indicate that there are functional differences between breast tumors with BRCA1 mutations and those with BRCA2 mutations. Significantly different groups of genes are expressed by breast cancers with BRCA1 mutations and breast cancers with BRCA2 mutations. Our results suggest that a heritable mutation influences the gene-expression profile of the cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer risks in BRCA2 mutation carriers.

              (1999)
              Carriers of germline mutations in the BRCA2 gene are known to be at high risk of breast and ovarian cancers, but the risks of other cancers in mutation carriers are uncertain. We investigated these risks in 173 breast-ovarian cancer families with BRCA2 mutations identified at 20 centers in Europe and North America. Other cancer occurrence was determined in a final cohort of 3728 individuals, among whom 681 persons had breast or ovarian cancer and 3047 persons either were known mutation carriers, were first-degree relatives of known mutation carriers, or were first-degree relatives of breast or ovarian cancer patients. Incidence rates were compared with population-specific incidence rates, and relative risks (RRs) to carriers, together with 95% confidence intervals (CIs), were estimated by use of a maximum likelihood approach. Three hundred thirty-three other cancers occurred in this cohort. Statistically significant increases in risks were observed for prostate cancer (estimated RR = 4.65; 95% CI = 3.48-6.22), pancreatic cancer (RR = 3.51; 95% CI = 1. 87-6.58), gallbladder and bile duct cancer (RR = 4.97; 95% CI = 1. 50-16.52), stomach cancer (RR = 2.59; 95%CI = 1.46-4.61), and malignant melanoma (RR = 2.58; 95% CI = 1.28-5.17). The RR for prostate cancer for men below the age of 65 years was 7.33 (95% CI = 4.66-11.52). Among women who had already developed breast cancer, the cumulative risks of a second, contralateral breast cancer and of ovarian cancer by the age of 70 years were estimated to be 52.3% (95% CI = 41.7%-61.0%) and 15.9% (95% CI = 8.8%-22.5%), respectively. In addition to the large risks of breast and ovarian cancers, BRCA2 mutations may be associated with increased risks of several other cancers.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2004
                15 July 2004
                : 5
                : 8
                : 113
                Affiliations
                [1 ]Institute of Human Genetics, International Centre for Life, University of Newcastle NE1 3BZ, UK
                Article
                gb-2004-5-8-113
                10.1186/gb-2004-5-8-113
                507868
                15287965
                51fd20b7-48fe-451c-ae58-e0bb8e6106ca
                Copyright © 2004 BioMed Central Ltd
                History
                Categories
                Opinion

                Genetics
                Genetics

                Comments

                Comment on this article