Blog
About

2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultralow Phase Noise Optoelectronic Oscillator and Its Application to a Frequency Synthesizer

      Read this article at

      ScienceOpenPublisherDOAJ
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We propose a novel injection-locked OptoElectronic Oscillator (OEO) with ultralow phase noise based on two cascaded phase modulators, which is further applied to construct a frequency synthesizer. Thanks to the phase modulation, the output optical spectrum expands and the optical power keeps constant while passing through the optical fiber, which dramatically reduces the intensity noise induced by the nonlinear effects of the optical fiber. A dual-output MZI together with a balanced optical detector realizes the phase modulation to intensity modulation conversion and improves the signal to noise ratio of the OEO. The output frequency of the proposed OEO is 9.9999914 GHz with its sidemode suppression ratio larger than 85 dB, and the phase noise reaches –153.1 dBc/Hz at 10 kHz frequency offset which is 38.7 dB lower than that of Keysight E8257D. Moreover, a broadband, high performance frequency synthesizer is established based on the proposed OEO. Combining the DDS and PLL technologies, the proposed frequency synthesizer can cover 5.9~12.9 GHz range. The phase noise is around –130 dBc/Hz@10 kHz, the spur suppression ratio is better than 65 dB, and the frequency hopping time is less than 1.48 μs.

          Related collections

          Author and article information

          Journal
          Journal of Radars
          Chinese Academy of Sciences
          01 April 2019
          : 8
          : 2
          : 243-250
          Affiliations
          [1 ] (Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
          Article
          df30b75589404b1a938fcd222d4afb67
          10.12000/JR19029

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Categories
          Technology (General)
          T1-995

          Comments

          Comment on this article