110
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Initiation of biofilm formation inPseudomonas fluorescensWCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis

      1 , 1
      Molecular Microbiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Populations of surface-attached microorganisms comprising either single or multiple species are commonly referred to as biofilms. Using a simple assay for the initiation of biofilm formation (e.g. attachment to an abiotic surface) by Pseudomonas fluorescens strain WCS365, we have shown that: (i) P. fluorescens can form biofilms on an abiotic surface when grown on a range of nutrients; (ii) protein synthesis is required for the early events of biofilm formation; (iii) one (or more) extracytoplasmic protein plays a role in interactions with an abiotic surface; (iv) the osmolarity of the medium affects the ability of the cell to form biofilms. We have isolated transposon mutants defective for the initiation of biofilm formation, which we term surface attachment defective (sad). Molecular analysis of the sad mutants revealed that the ClpP protein (a component of the cytoplasmic Clp protease) participates in biofilm formation in this organism. Our genetic analyses suggest that biofilm formation can proceed via multiple, convergent signalling pathways, which are regulated by various environmental signals. Finally, of the 24 sad mutants analysed in this study, only three had defects in genes of known function. This result suggests that our screen is uncovering novel aspects of bacterial physiology.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Basic Local Alignment Search Tool

          S Altschul (1990)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial biofilms.

            Direct observations have clearly shown that biofilm bacteria predominate, numerically and metabolically, in virtually all nutrient-sufficient ecosystems. Therefore, these sessile organisms predominate in most of the environmental, industrial, and medical problems and processes of interest to microbiologists. If biofilm bacteria were simply planktonic cells that had adhered to a surface, this revelation would be unimportant, but they are demonstrably and profoundly different. We first noted that biofilm cells are at least 500 times more resistant to antibacterial agents. Now we have discovered that adhesion triggers the expression of a sigma factor that derepresses a large number of genes so that biofilm cells are clearly phenotypically distinct from their planktonic counterparts. Each biofilm bacterium lives in a customized microniche in a complex microbial community that has primitive homeostasis, a primitive circulatory system, and metabolic cooperativity, and each of these sessile cells reacts to its special environment so that it differs fundamentally from a planktonic cell of the same species.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Rapid extraction of bacterial genomic DNA with guanidium thiocyanate

                Bookmark

                Author and article information

                Journal
                Molecular Microbiology
                Molecular Microbiology
                Wiley
                0950-382X
                1365-2958
                April 1998
                April 1998
                April 1998
                April 1998
                : 28
                : 3
                : 449-461
                Affiliations
                [1 ]Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
                Article
                10.1046/j.1365-2958.1998.00797.x
                9632250
                52133b7d-8bd8-46a9-9ea6-a826b1e56331
                © 1998

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article