38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          See Jackson (doi: [Related article:]10.1093/brain/awu338) for a scientific commentary on this article.

          The neural substrate of Gilles de la Tourette syndrome is unknown. Worbe et al. use probabilistic tractography to demonstrate widespread structural abnormalities in cortico-striato-pallido-thalamic white matter pathways—likely arising from abnormal brain development—in patients with this syndrome.

          Abstract

          Gilles de la Tourette syndrome is a childhood-onset syndrome characterized by the presence and persistence of motor and vocal tics. A dysfunction of cortico-striato-pallido-thalamo-cortical networks in this syndrome has been supported by convergent data from neuro-pathological, electrophysiological as well as structural and functional neuroimaging studies. Here, we addressed the question of structural integration of cortico-striato-pallido-thalamo-cortical networks in Gilles de la Tourette syndrome. We specifically tested the hypothesis that deviant brain development in Gilles de la Tourette syndrome could affect structural connectivity within the input and output basal ganglia structures and thalamus. To this aim, we acquired data on 49 adult patients and 28 gender and age-matched control subjects on a 3 T magnetic resonance imaging scanner. We used and further implemented streamline probabilistic tractography algorithms that allowed us to quantify the structural integration of cortico-striato-pallido-thalamo-cortical networks. To further investigate the microstructure of white matter in patients with Gilles de la Tourette syndrome, we also evaluated fractional anisotropy and radial diffusivity in these pathways, which are both sensitive to axonal package and to myelin ensheathment. In patients with Gilles de la Tourette syndrome compared to control subjects, we found white matter abnormalities in neuronal pathways connecting the cerebral cortex, the basal ganglia and the thalamus. Specifically, striatum and thalamus had abnormally enhanced structural connectivity with primary motor and sensory cortices, as well as paracentral lobule, supplementary motor area and parietal cortices. This enhanced connectivity of motor cortex positively correlated with severity of tics measured by the Yale Global Tics Severity Scale and was not influenced by current medication status, age or gender of patients. Independently of the severity of tics, lateral and medial orbito-frontal cortex, inferior frontal, temporo-parietal junction, medial temporal and frontal pole also had enhanced structural connectivity with the striatum and thalamus in patients with Gilles de la Tourette syndrome. In addition, the cortico-striatal pathways were characterized by elevated fractional anisotropy and diminished radial diffusivity, suggesting microstructural axonal abnormalities of white matter in Gilles de la Tourette syndrome. These changes were more prominent in females with Gilles de la Tourette syndrome compared to males and were not related to the current medication status. Taken together, our data showed widespread structural abnormalities in cortico-striato-pallido-thalamic white matter pathways in patients with Gilles de la Tourette, which likely result from abnormal brain development in this syndrome.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Microstructural maturation of the human brain from childhood to adulthood.

          Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n=202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-resolution intersubject averaging and a coordinate system for the cortical surface.

            The neurons of the human cerebral cortex are arranged in a highly folded sheet, with the majority of the cortical surface area buried in folds. Cortical maps are typically arranged with a topography oriented parallel to the cortical surface. Despite this unambiguous sheetlike geometry, the most commonly used coordinate systems for localizing cortical features are based on 3-D stereotaxic coordinates rather than on position relative to the 2-D cortical sheet. In order to address the need for a more natural surface-based coordinate system for the cortex, we have developed a means for generating an average folding pattern across a large number of individual subjects as a function on the unit sphere and of nonrigidly aligning each individual with the average. This establishes a spherical surface-based coordinate system that is adapted to the folding pattern of each individual subject, allowing for much higher localization accuracy of structural and functional features of the human brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The thalamostriatal system: a highly specific network of the basal ganglia circuitry.

              Although the existence of thalamostriatal projections has long been known, the role(s) of this system in the basal ganglia circuitry remains poorly characterized. The intralaminar and ventral motor nuclei are the main sources of thalamic inputs to the striatum. This review emphasizes the high degree of anatomical and functional specificity of basal ganglia-thalamostriatal projections and discusses various aspects of the synaptic connectivity and neurochemical features that differentiate this glutamate system from the corticostriatal network. It also discusses the importance of thalamostriatal projections from the caudal intralaminar nuclei in the process of attentional orientation. A major task of future studies is to characterize the role(s) of corticostriatal and thalamostriatal pathways in regulating basal ganglia activity in normal and pathological conditions.
                Bookmark

                Author and article information

                Journal
                Brain
                Brain
                brainj
                brain
                Brain
                Oxford University Press
                0006-8950
                1460-2156
                February 2015
                12 November 2014
                12 November 2014
                : 138
                : 2
                : 472-482
                Affiliations
                1 Centre de Référence National Maladie Rare ‘Syndrome Gilles de la Tourette’, Pôle des Maladies du Système Nerveux, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
                2 Sorbonne Universités, UPMC Université Paris 06, UM 75, ICM, F-75013 Paris, France
                3 Assistance Publique Hôpitaux de Paris (APHP), INSERM, ICM, Centre d’Investigation Clinique Pitié Neurosciences, CIC-1422, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, Paris, France
                4 NeuroSpin, CEA, Gif-Sur-Yvette, France
                5 Inria, Aramis project-team, Centre Paris-Rocquencourt, France
                6 Centre de NeuroImagerie de Recherche – CENIR, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
                Author notes
                Correspondence to: Yulia Worbe, Centre de Référence syndrome Gilles de la Tourette, clinique Paul Castaigne, Hôpital Pitié-Salpêtrière, 47 – 91 boulevard de l’Hôpital, Paris, F-75013, France. E-mail: yworbe@ 123456gmail.com

                *These authors contributed equally to this work.

                See Draper and Jackson ( [Related article:]doi:10.1093/brain/awu338) for a scientific commentary on this article.

                Article
                awu311
                10.1093/brain/awu311
                4306818
                25392196
                5214161e-50da-44b9-a6f4-362a8a778cb3
                © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 12 March 2014
                : 29 June 2014
                : 16 September 2014
                Page count
                Pages: 11
                Categories
                Original Articles

                Neurosciences
                cortico-basal ganglia networks,structural connectivity and tractography,gilles de la tourette syndrome

                Comments

                Comment on this article