+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Pandemic potential of a strain of influenza A (H1N1): early findings.

      Science (New York, N.Y.)

      Disease Outbreaks, Global Health, Humans, Influenza A Virus, H1N1 Subtype, Influenza, Human, epidemiology, mortality, transmission, virology, Mexico, Molecular Sequence Data, Travel

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          A novel influenza A (H1N1) virus has spread rapidly across the globe. Judging its pandemic potential is difficult with limited data, but nevertheless essential to inform appropriate health responses. By analyzing the outbreak in Mexico, early data on international spread, and viral genetic diversity, we make an early assessment of transmissibility and severity. Our estimates suggest that 23,000 (range 6000 to 32,000) individuals had been infected in Mexico by late April, giving an estimated case fatality ratio (CFR) of 0.4% (range: 0.3 to 1.8%) based on confirmed and suspected deaths reported to that time. In a community outbreak in the small community of La Gloria, Veracruz, no deaths were attributed to infection, giving an upper 95% bound on CFR of 0.6%. Thus, although substantial uncertainty remains, clinical severity appears less than that seen in the 1918 influenza pandemic but comparable with that seen in the 1957 pandemic. Clinical attack rates in children in La Gloria were twice that in adults (<15 years of age: 61%; >/=15 years: 29%). Three different epidemiological analyses gave basic reproduction number (R0) estimates in the range of 1.4 to 1.6, whereas a genetic analysis gave a central estimate of 1.2. This range of values is consistent with 14 to 73 generations of human-to-human transmission having occurred in Mexico to late April. Transmissibility is therefore substantially higher than that of seasonal flu, and comparable with lower estimates of R0 obtained from previous influenza pandemics.

          Related collections

          Most cited references 17

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          BEAST: Bayesian evolutionary analysis by sampling trees

          Background The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. Results BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at under the GNU LGPL license. Conclusion BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.
            • Record: found
            • Abstract: found
            • Article: not found

            Emergence of a novel swine-origin influenza A (H1N1) virus in humans.

            On April 15 and April 17, 2009, novel swine-origin influenza A (H1N1) virus (S-OIV) was identified in specimens obtained from two epidemiologically unlinked patients in the United States. The same strain of the virus was identified in Mexico, Canada, and elsewhere. We describe 642 confirmed cases of human S-OIV infection identified from the rapidly evolving U.S. outbreak. Enhanced surveillance was implemented in the United States for human infection with influenza A viruses that could not be subtyped. Specimens were sent to the Centers for Disease Control and Prevention for real-time reverse-transcriptase-polymerase-chain-reaction confirmatory testing for S-OIV. From April 15 through May 5, a total of 642 confirmed cases of S-OIV infection were identified in 41 states. The ages of patients ranged from 3 months to 81 years; 60% of patients were 18 years of age or younger. Of patients with available data, 18% had recently traveled to Mexico, and 16% were identified from school outbreaks of S-OIV infection. The most common presenting symptoms were fever (94% of patients), cough (92%), and sore throat (66%); 25% of patients had diarrhea, and 25% had vomiting. Of the 399 patients for whom hospitalization status was known, 36 (9%) required hospitalization. Of 22 hospitalized patients with available data, 12 had characteristics that conferred an increased risk of severe seasonal influenza, 11 had pneumonia, 8 required admission to an intensive care unit, 4 had respiratory failure, and 2 died. The S-OIV was determined to have a unique genome composition that had not been identified previously. A novel swine-origin influenza A virus was identified as the cause of outbreaks of febrile respiratory infection ranging from self-limited to severe illness. It is likely that the number of confirmed cases underestimates the number of cases that have occurred. 2009 Massachusetts Medical Society
              • Record: found
              • Abstract: found
              • Article: not found

              Strategies for mitigating an influenza pandemic

              Pandemic flu: talking tactics Numerical models of the epidemiology of a potential flu pandemic show there is no single magic bullet which can control the outbreak, but that a combination of approaches could reduce transmission and save many lives. Border restrictions are unlikely to have much effect and travel restrictions within one country would make very little difference to the spread of a pandemic within that country. The models predict that a pandemic in the United Kingdom would peak within two to three months of the first case, and be over within 4 months. It also shows that vaccines need to be available within two months of the start of a pandemic to have a big effect in reducing infection rates. That means that vaccines would need to be stockpiled in advance to be effective. Supplementary information The online version of this article (doi:10.1038/nature04795) contains supplementary material, which is available to authorized users.

                Author and article information



                Comment on this article