9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Kinetic parameters and nitrate, nitrite changes in bioremediation of Toxic Pentaerythritol Tetranitrate (PETN) contaminated soil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cleanup of areas contaminated by explosives is a public health concern. Some explosives can be carcinogenic in humans. Pentaerythritol Tetranitrate (PETN), a powerful explosive with very low water solubility, can be easily transported to ground waters.

          Objective

          This study was conducted to determine the removal efficiencies of PETN from soil by bioremediation, and obtain kinetic parameters of biological process.

          Methods

          This experimental study was conducted at the Environmental Health Engineering Lab (Isfahan University of Medical Sciences, Isfahan, Iran) in 2015–2016. In the present work, bioremediation of the explosive-polluted soils by PETN in anaerobic-aerobic landfarming method was performed. The influence of seeding and biosurfactant addition on bioremediation was also evaluated. The data were analyzed using Microsoft Excel software.

          Results

          The results show that, as the initial concentration of PETN increased, the lag phase was increased and the specific growth rate was increased up to 0.1/day in concentration of 50 mg/kg, and then it was decreased to 0.04/day. Subsequent decreases in specific growth rate can cause substrate inhibition. Seeding causes decrease in lag phase significantly. Biosurfactant addition had little to no impact on the length of lag phase, but biosurfactant plus seeding can increase the growth rate to 0.2/day, however, inhibitory effect of the initial concentration was started in very high concentration of PETN (150 mg/kg).

          Conclusion

          Biosurfactant addition and seeding together have an impressive effect on biodegradation of PETN, furthermore seeding can enhance active microbial consortium and biosurfactant can improve the poor aqueous solubility of PETN, therefore making the substrate more accessible.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients.

          The purpose of the present study was to investigate possible methods to enhance the rate of biodegradation of oil sludge from crude oil tank bottom, thus reducing the time usually required for bioremediation. Enhancement of biodegradation was achieved through bioaugmentation and biostimulation. About 10% and 20% sludge contaminated sterile and non-sterile soil samples were treated with bacterial consortium (BC), rhamnolipid biosurfactant (RL) and nitrogen, phosphorus and potassium (NPK) solution. Maximum n-alkane degradation occurred in the 10% sludge contaminated soil samples. The effects of treatment carried out with the non-sterile soil samples were more pronounced than in the sterile soils. Maximum degradation was achieved after the 56th day of treatment. n-Alkanes in the range of nC8-nC11 were degraded completely followed by nC12-nC21, nC22-nC31 and nC32-nC40 with percentage degradations of 100%, 83-98%, 80-85% and 57-73% respectively. Statistical analysis using analysis of variance and Duncan's multiple range test revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, protein concentration and surface tension at a 1% probability level. All tested additives BC, NPK and RL had significant positive effects on the bioremediation of n-alkane in petroleum sludge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological degradation of 2,4,6-trinitrotoluene.

            Nitroaromatic compounds are xenobiotics that have found multiple applications in the synthesis of foams, pharmaceuticals, pesticides, and explosives. These compounds are toxic and recalcitrant and are degraded relatively slowly in the environment by microorganisms. 2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound. Certain strains of Pseudomonas and fungi can use TNT as a nitrogen source through the removal of nitrogen as nitrite from TNT under aerobic conditions and the further reduction of the released nitrite to ammonium, which is incorporated into carbon skeletons. Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes. Most if not all aerobic microorganisms reduce TNT to the corresponding amino derivatives via the formation of nitroso and hydroxylamine intermediates. Condensation of the latter compounds yields highly recalcitrant azoxytetranitrotoluenes. Anaerobic microorganisms can also degrade TNT through different pathways. One pathway, found in Desulfovibrio and Clostridium, involves reduction of TNT to triaminotoluene; subsequent steps are still not known. Some Clostridium species may reduce TNT to hydroxylaminodinitrotoluenes, which are then further metabolized. Another pathway has been described in Pseudomonas sp. strain JLR11 and involves nitrite release and further reduction to ammonium, with almost 85% of the N-TNT incorporated as organic N in the cells. It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis. In this review we also discuss a number of biotechnological applications of bacteria and fungi, including slurry reactors, composting, and land farming, to remove TNT from polluted soils. These treatments have been designed to achieve mineralization or reduction of TNT and immobilization of its amino derivatives on humic material. These approaches are highly efficient in removing TNT, and increasing amounts of research into the potential usefulness of phytoremediation, rhizophytoremediation, and transgenic plants with bacterial genes for TNT removal are being done.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant).

              A microbial surfactant (biosurfactant) was investigated for its potential to enhance bioavailability and, hence, the biodegradation of octadecane. The rhamnolipid biosurfactant used in this study was extracted from culture supernatants after growth of Pseudomonas aeruginosa ATCC 9027 in phosphate-limited proteose peptone-glucose-ammonium salts medium. Dispersion of octadecane in aqueous solutions was dramatically enhanced by 300 mg of the rhamnolipid biosurfactant per liter, increasing by a factor of more than 4 orders of magnitude, from 0.009 to > 250 mg/liter. The relative enhancement of octadecane dispersion was much greater at low rhamnolipid concentrations than at high concentrations. Rhamnolipid-enhanced octadecane dispersion was found to be dependent on pH and shaking speed. Biodegradation experiments done with an initial octadecane concentration of 1,500 mg/liter showed that 20% of the octadecane was mineralized in 84 h in the presence of 300 mg of rhamnolipid per liter, compared with only 5% octadecane mineralization when no surfactant was present. These results indicate that rhamnolipids may have potential for facilitating the bioremediation of sites contaminated with hydrocarbons having limited water solubility.
                Bookmark

                Author and article information

                Journal
                Electron Physician
                Electron Physician
                Electronic physician
                Electronic Physician
                Electronic physician
                2008-5842
                October 2017
                25 October 2017
                : 9
                : 10
                : 5623-5630
                Affiliations
                [1 ]Department of Environmental Health Engineering, School of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
                [2 ]Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran, and Department of Environmental Health Engineering, Student Research Center, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
                [3 ]Department of Environmental Health Engineering, School of Health, Lorestan University of Medical Sciences, Khoramabad, Iran
                [4 ]Department of Environmental Health Engineering, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
                [5 ]Ph.D. of Environmental Health, Professor, Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran, and Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
                [6 ]Imam Hussein University (AS)
                Author notes
                Corresponding author: Professor Dr. Mohammad Mehdi Amin, Isfahan University of Medical Sciences, Isfahan, Iran. Tel: +98.3137922667, Fax: +98.3137922667, Email: amin@ 123456hlth.mui.ac.ir
                Article
                epj-09-5623
                10.19082/5623
                5718871
                52289b43-8053-4981-8756-0fb211c54d44
                © 2017 The Authors

                This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 13 September 2016
                : 18 January 2017
                Categories
                Original Article

                petn,soil,bioremediation,nitrate,nitrite,kinetic parameters
                petn, soil, bioremediation, nitrate, nitrite, kinetic parameters

                Comments

                Comment on this article