204
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Sequence Ontology: a tool for the unification of genome annotations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The goal of the Sequence Ontology (SO) project is to produce a structured controlled vocabulary with a common set of terms and definitions for parts of a genomic annotation, and to describe the relationships among them. Details of SO construction, design and use, particularly with regard to part-whole relationships are discussed and the practical utility of SO is demonstrated for a set of genome annotations from Drosophila melanogaster.

          Abstract

          The Sequence Ontology (SO) is a structured controlled vocabulary for the parts of a genomic annotation. SO provides a common set of terms and definitions that will facilitate the exchange, analysis and management of genomic data. Because SO treats part-whole relationships rigorously, data described with it can become substrates for automated reasoning, and instances of sequence features described by the SO can be subjected to a group of logical operations termed extensional mereology operators.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Article: not found

          Basic Local Alignment Search Tool

          S Altschul (1990)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Bioperl toolkit: Perl modules for the life sciences.

            The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent programming interface for bioinformatics application programmers. The Bioperl modules have been successfully and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion of how the open-source nature of the project has contributed to the development effort.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community.

              Arabidopsis thaliana is the most widely-studied plant today. The concerted efforts of over 11 000 researchers and 4000 organizations around the world are generating a rich diversity and quantity of information and materials. This information is made available through a comprehensive on-line resource called the Arabidopsis Information Resource (TAIR) (http://arabidopsis.org), which is accessible via commonly used web browsers and can be searched and downloaded in a number of ways. In the last two years, efforts have been focused on increasing data content and diversity, functionally annotating genes and gene products with controlled vocabularies, and improving data retrieval, analysis and visualization tools. New information include sequence polymorphisms including alleles, germplasms and phenotypes, Gene Ontology annotations, gene families, protein information, metabolic pathways, gene expression data from microarray experiments and seed and DNA stocks. New data visualization and analysis tools include SeqViewer, which interactively displays the genome from the whole chromosome down to 10 kb of nucleotide sequence and AraCyc, a metabolic pathway database and map tool that allows overlaying expression data onto the pathway diagrams. Finally, we have recently incorporated seed and DNA stock information from the Arabidopsis Biological Resource Center (ABRC) and implemented a shopping-cart style on-line ordering system.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2005
                29 April 2005
                : 6
                : 5
                : R44
                Affiliations
                [1 ]Department of Molecular and Cellular Biology, Life Sciences Addition, University of California, Berkeley, CA 94729-3200, USA
                [2 ]Howard Hughes Memorial Institute, Department of Molecular and Cellular Biology, Life Sciences Addition, University of California, Berkeley, CA 94729-3200, USA
                [3 ]Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
                [4 ]Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
                [5 ]Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
                Article
                gb-2005-6-5-r44
                10.1186/gb-2005-6-5-r44
                1175956
                15892872
                522cff30-fac5-424d-9d64-b1e66a974e29
                Copyright © 2005 Eilbeck et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 October 2004
                : 1 February 2005
                : 30 March 2005
                Categories
                Method

                Genetics
                Genetics

                Comments

                Comment on this article