7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of Single Phase and Biphasic Extraction Protocols for Lipidomic Studies Using Human Plasma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipidomic profiling of plasma is an emerging field, given the importance of lipids in major cellular pathways, and is dependent on efficient lipid extraction protocols. Recent attention has turned to plasma lipidomics as a means to identify potential diagnostic and prognostic biomarkers related to dementia, neuropsychiatric health and disease. Although several solvent-based lipid extraction protocols have been developed and are currently in use, novel and more efficient methods could greatly simplify lipid analysis in plasma and warrant investigation. Human plasma from normolipidemic adult volunteers was collected to evaluate three different solvent extraction protocols, including the classical Folch method, the methanol/tert-butyl methyl ether (MTBE) (Matyash) method, and a recent single-phase methanol/1-butanol (Alshehry) method. Extracted lipids were analyzed using liquid chromatography mass spectrometry (LC-MS) in positive and negative ion mode. Overall, more than 500 different lipids were identified in positive and negative ion mode combined. Our data show that the single phase Alshehry method was as effective as the Folch and Matyash methods in extracting most lipid classes and was more effective in extraction of polar lipids. Normalized peak areas of the Alshehry method were highly and positively correlated with both the Folch and Matyash methods ( r 2 = 0.99 and 0.97, respectively). Within- and between- subject correlations were r = 0.99 and 0.96, respectively. Median intra-assay coefficient of variation (CV%) in positive mode was 14.1, 15.1, and 21.8 for the Alshehry, Folch and Matyash methods, respectively. Median Alshehry inter-assay CV (collected over 5 separate days) was 14.4%. In conclusion, the novel Alshehry method was at least as good as, if not better than the established biphasic extraction methods in detecting a wide range of lipid classes, using as little as 10 μL of plasma, and was highly reproducible, safer and more environmentally-friendly as it doesn't require chloroform.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics.

          Accurate profiling of lipidomes relies upon the quantitative and unbiased recovery of lipid species from analyzed cells, fluids, or tissues and is usually achieved by two-phase extraction with chloroform. We demonstrated that methyl-tert-butyl ether (MTBE) extraction allows faster and cleaner lipid recovery and is well suited for automated shotgun profiling. Because of MTBE's low density, lipid-containing organic phase forms the upper layer during phase separation, which simplifies its collection and minimizes dripping losses. Nonextractable matrix forms a dense pellet at the bottom of the extraction tube and is easily removed by centrifugation. Rigorous testing demonstrated that the MTBE protocol delivers similar or better recoveries of species of most all major lipid classes compared with the "gold-standard" Folch or Bligh and Dyer recipes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry.

            To explore the hypothesis that alterations in ethanolamine plasmalogen may be directly related to the severity of dementia in Alzheimer's disease (AD), we performed a systematic examination of plasmalogen content in cellular membranes of gray and white matter from different regions of human subjects with a spectrum of AD clinical dementia ratings (CDR) using electrospray ionization mass spectrometry (ESI/MS). The results demonstrate: (1) a dramatic decrease in plasmalogen content (up to 40 mol% of total plasmalogen) in white matter at a very early stage of AD (i.e. CDR 0.5); (2) a correlation of the deficiency in gray matter plasmalogen content with the AD CDR (i.e. approximately 10 mol% of deficiency at CDR 0.5 (very mild dementia) to approximately 30 mol% of deficiency at CDR 3 (severe dementia); (3) an absence of alterations of plasmalogen content and molecular species in cerebellar gray matter at any CDR despite dramatic alterations of plasmalogen content in cerebellar white matter. Alterations of ethanolamine plasmalogen content in two mouse models of AD, APP(V717F) and APPsw, were also examined by ESI/MS. A plasmalogen deficiency was present (up to 10 mol% of total plasmalogen at the age of 18 months) in cerebral cortices, but was absent in cerebella from both animal models. These results suggest plasmalogen deficiency may play an important role in the AD pathogenesis, particularly in the white matter, and suggest that altered plasmalogen content may contribute to neurodegeneration, synapse loss and synaptic dysfunction in AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines 1

              Human blood is a self-regenerating lipid-rich biological fluid that is routinely collected in hospital settings. The inventory of lipid molecules found in blood plasma (plasma lipidome) offers insights into individual metabolism and physiology in health and disease. Disturbances in the plasma lipidome also occur in conditions that are not directly linked to lipid metabolism; therefore, plasma lipidomics based on MS is an emerging tool in an array of clinical diagnostics and disease management. However, challenges exist in the translation of such lipidomic data to clinical applications. These relate to the reproducibility, accuracy, and precision of lipid quantitation, study design, sample handling, and data sharing. This position paper emerged from a workshop that initiated a community-led process to elaborate and define a set of generally accepted guidelines for quantitative MS-based lipidomics of blood plasma or serum, with harmonization of data acquired on different instrumentation platforms across independent laboratories as an ultimate goal. We hope that other fields may benefit from and follow such a precedent.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                21 August 2019
                2019
                : 10
                : 879
                Affiliations
                [1] 1Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales , Sydney, NSW, Australia
                [2] 2Bioanalytical Mass Spectrometry Facility, University of New South Wales , Sydney, NSW, Australia
                [3] 3Euroa Centre, Prince of Wales Hospital, Neuropsychiatric Institute , Sydney, NSW, Australia
                [4] 4School of Medical Sciences, Faculty of Medicine, University of New South Wales , Sydney, NSW, Australia
                Author notes

                Edited by: Maria Dolores Ledesma, Severo Ochoa Molecular Biology Center (CSIC-UAM), Spain

                Reviewed by: Margaret Ellen Flanagan, University of Minnesota Twin Cities, United States; Elisabetta Albi, Università Degli Studi Di Perugia, Italy

                *Correspondence: Nady Braidy n.braidy@ 123456unsw.edu.au

                This article was submitted to Dementia, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2019.00879
                6712511
                31496985
                523289d9-566a-4173-8e55-377eee2cdf3d
                Copyright © 2019 Wong, Braidy, Pickford, Sachdev and Poljak.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 March 2019
                : 29 July 2019
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 63, Pages: 11, Words: 8028
                Categories
                Neurology
                Original Research

                Neurology
                lipidomics,lipid extraction,mass spectrometry,plasma lipids,chromatography
                Neurology
                lipidomics, lipid extraction, mass spectrometry, plasma lipids, chromatography

                Comments

                Comment on this article