1,020
views
0
recommends
+1 Recommend
1 collections
    21
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How to Design a Genetic Mating Scheme: A Basic Training Package for Drosophila Genetics

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drosophila melanogaster is a powerful model organism for biological research. The essential and common instrument of fly research is genetics, the art of applying Mendelian rules in the specific context of Drosophila with its unique classical genetic tools and the breadth of modern genetic tools and strategies brought in by molecular biology, transgenic technologies and the use of recombinases. Training newcomers to fly genetics is a complex and time-consuming task but too important to be left to chance. Surprisingly, suitable training resources for beginners currently are not available. Here we provide a training package for basic Drosophila genetics, designed to ensure that basic knowledge on all key areas is covered while reducing the time invested by trainers. First, a manual introduces to fly history, rationale for mating schemes, fly handling, Mendelian rules in fly, markers and balancers, mating scheme design, and transgenic technologies. Its self-study is followed by a practical training session on gender and marker selection, introducing real flies under the dissecting microscope. Next, through self-study of a PowerPoint presentation, trainees are guided step-by-step through a mating scheme. Finally, to consolidate knowledge, trainees are asked to design similar mating schemes reflecting routine tasks in a fly laboratory. This exercise requires individual feedback but also provides unique opportunities for trainers to spot weaknesses and strengths of each trainee and take remedial action. This training package is being successfully applied at the Manchester fly facility and may serve as a model for further training resources covering other aspects of fly research.

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: found
          • Article: not found

          Drosophila, the golden bug, emerges as a tool for human genetics.

           Ethan Bier (2004)
          Drosophila melanogaster is emerging as one of the most effective tools for analyzing the function of human disease genes, including those responsible for developmental and neurological disorders, cancer, cardiovascular disease, metabolic and storage diseases, and genes required for the function of the visual, auditory and immune systems. Flies have several experimental advantages, including their rapid life cycle and the large numbers of individuals that can be generated, which make them ideal for sophisticated genetic screens, and in future should aid the analysis of complex multigenic disorders. The general principles by which D. melanogaster can be used to understand human disease, together with several specific examples, are considered in this review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future.

            Discoveries in fruit flies have greatly contributed to our understanding of neuroscience. The use of an unparalleled wealth of tools, many of which originated between 1910–1960, has enabled milestone discoveries in nervous system development and function. Such findings have triggered and guided many research efforts in vertebrate neuroscience. After 100 years, fruit flies continue to be the choice model system for many neuroscientists. The combinational use of powerful research tools will ensure that this model organism will continue to lead to key discoveries that will impact vertebrate neuroscience.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wnt signaling from development to disease: insights from model systems.

              One of the early surprises in the study of cell adhesion was the discovery that beta-catenin plays dual roles, serving as an essential component of cadherin-based cell-cell adherens junctions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we review our current model of Wnt signaling and discuss how recent work using model organisms has advanced our understanding of the roles Wnt signaling plays in both normal development and in disease. These data help flesh out the mechanisms of signaling from the membrane to the nucleus, revealing new protein players and providing novel information about known components of the pathway.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                ggg
                ggg
                ggg
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                1 February 2013
                February 2013
                : 3
                : 2
                : 353-358
                Affiliations
                [* ]Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
                []Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, M13 9PT, United Kingdom
                Author notes
                [1 ]Corresponding author: The University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester M13 9PT. E-mail: Andreas.Prokop@ 123456manchester.ac.uk
                Article
                GGG_004820
                10.1534/g3.112.004820
                3564995
                23390611
                Copyright © 2013 Roote, Prokop

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Product
                Categories
                Investigations
                Custom metadata
                v1

                Genetics

                drosophila, model organism, education, transgenesis, classical genetics

                Comments

                Comment on this article