15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autophagy in human articular chondrocytes is cytoprotective following glucocorticoid stimulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For the past 60 years, glucocorticosteroid (GC) drugs, including prednisone and dexamethasone (Dex), have been used for the treatment of early stage osteoarthritis (OA). However, multiple administration of GCs may destroy the articular cartilage. It has been previously reported that GC treatment may also lead to the initiation of autophagy, which is an essential mechanism for cell homeostasis and survival. Rapamycin (Rapa), an inhibitor of the mammalian target of Rapamycin, may cause a degeneration-associated pathology in organs and induce autophagy in a variety of cell types, which has been applied in the treatment of experimental OA. A previous study by our group observed that GC apparently increases the apoptosis of chondrocytes, resulting in the inhibition of extracellular matrix synthesis. Therefore, the present study aimed to further examine the effects of autophagy in chondrocytes under GC treatment and to verify the molecular mechanisms involved in the cytoprotective role of Rapa. Short-term GC treatment did not significantly inhibit chondrocyte viability, while cell autophagy was increased. In addition, upregulation of autophagy by Rapa prevented the expression of apoptosis-associated genes and improved cell activity. In conclusion, the present study revealed that increased autophagy is an adaptive response to protect chondrocytes from short-term GC exposure, whereas prolonged GC treatment decreases autophagy and increases apoptosis in vitro. Upregulation of autophagy by Rapa may protect chondrocytes against the adverse effect induced by GC.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy as a cell death and tumor suppressor mechanism.

          Autophagy is characterized by sequestration of bulk cytoplasm and organelles in double or multimembrane autophagic vesicles, and their delivery to and subsequent degradation by the cell's own lysosomal system. Autophagy has multiple physiological functions in multicellular organisms, including protein degradation and organelle turnover. Genes and proteins that constitute the basic machinery of the autophagic process were first identified in the yeast system and some of their mammalian orthologues have been characterized as well. Increasing lines of evidence indicate that these molecular mechanisms may be recruited by an alternative, caspase-independent form of programmed cell death, named autophagic type II cell death. In some settings, autophagy and apoptosis seem to be interconnected positively or negatively, introducing the concept of 'molecular switches' between them. Additionally, mitochondria may be central organelles integrating the two types of cell death. Malignant transformation is frequently associated with suppression of autophagy. The recent implication of tumor suppressors like Beclin 1, DAP-kinase and PTEN in autophagic pathways indicates a causative role for autophagy deficiencies in cancer formation. Autophagic cell death induction by some anticancer agents underlines the potential utility of its induction as a new cancer treatment modality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis.

            Autophagy is a process for turnover of intracellular organelles and molecules that protects cells during stress responses. We undertook this study to evaluate the potential roles of Unc-51-like kinase 1 (ULK1), an inducer of autophagy, Beclin1, a regulator of autophagy, and microtubule-associated protein 1 light chain 3 (LC3), which executes autophagy, in the development of osteoarthritis (OA) and in cartilage cell death. Expression of ULK1, Beclin1, and LC3 was analyzed in normal and OA human articular cartilage and in knee joints of mice with aging-related and surgically induced OA, using immunohistochemistry and Western blotting. Poly(ADP-ribose) polymerase (PARP) p85 expression was used to determine the correlation between cell death and autophagy. ULK1, Beclin1, and LC3 were constitutively expressed in normal human articular cartilage. ULK1, Beclin1, and LC3 protein expression was reduced in OA chondrocytes and cartilage, but these 3 proteins were strongly expressed in the OA cell clusters. In mouse knee joints, loss of glycosaminoglycans (GAGs) was observed at ages 9 months and 12 months and in the surgical OA model, 8 weeks after knee destabilization. Expression of ULK1, Beclin1, and LC3 decreased together with GAG loss, while PARP p85 expression was increased. Autophagy may be a protective or homeostatic mechanism in normal cartilage. In contrast, human OA and aging-related and surgically induced OA in mice are associated with a reduction and loss of ULK1, Beclin1, and LC3 expression and a related increase in apoptosis. These results suggest that compromised autophagy represents a novel mechanism in the development of OA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of reactive oxygen species in homeostasis and degradation of cartilage.

              The metabolism of cells in articular joint tissues in normal and pathological conditions is subject to a complex environmental control. In addition to soluble mediators such as cytokines and growth factors, as well as mechanical stimuli, reactive oxygen species (ROS) emerge as major factors in this regulation. ROS production has been found to increase in joint diseases, such as osteoarthritis and rheumatoid arthritis, but their role in joint diseases initiation and progression remains questionable. This review is focused on the role of ROS, mainly nitric oxide, peroxynitrite and superoxide anion radicals, in the signaling mechanisms implied in the main cellular functions, including synthesis and degradation of matrix components. The direct effects of ROS on cartilage matrix components as well as their inflammatory and immunomodulatory effects are also considered. Some intracellular signaling pathways are redox sensitive and ROS are involved in the regulation of the production of some biochemical factors involved in cartilage degradation and joint inflammation. Further, ROS may cause damage to all matrix components, either by a direct attack or indirectly by reducing matrix components synthesis, by inducing apoptosis or by activating latent metalloproteinases. Finally, we have highlighted the uncoupling effect of ROS on tissue remodeling and synovium inflammation, suggesting that antioxidant therapy could be helpful to treat structural changes but not to relieve symptoms. This review of the literature supports the concept that ROS are not only deleterious agents involved in cartilage degradation, but that they also act as integral factors of intracellular signaling mechanisms. Further investigation is required to support the concept of antioxidant therapy in the management of joint diseases.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                June 2014
                01 April 2014
                01 April 2014
                : 9
                : 6
                : 2166-2172
                Affiliations
                Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
                Author notes
                Correspondence to: Professor Wenbo Wang, Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, Heilongjiang 150001, P.R. China, E-mail: wangwwbo@ 123456126.com
                Article
                mmr-09-06-2166
                10.3892/mmr.2014.2102
                4055442
                24691715
                523998bf-8537-42fb-a651-8ae331f73c3a
                Copyright © 2014, Spandidos Publications

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 13 August 2013
                : 07 March 2014
                Categories
                Articles

                chondrocytes,dexamethasone,glucocorticoid,autophagy,apoptosis

                Comments

                Comment on this article