9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Amyloid deposits derived from transthyretin in the ligamentum flavum as related to lumbar spinal canal stenosis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amyloidosis is a protein conformational disorder with the distinctive feature of extracellular accumulation of amyloid fibrils that come from different proteins. In the ligamentum flavum of the lumbar spine, amyloid deposits were frequently found in elderly patients with lumbar spinal canal stenosis and were at least partially formed by wild-type transthyretin. However, how amyloid deposits in the ligamentum flavum affect lumbar spinal canal stenosis has remained unclear. In this study, we analyzed clinical, pathologic, and radiologic findings of patients with lumbar spinal canal stenosis who had amyloid deposits in the ligamentum flavum. We studied 95 ligamentum flavum specimens obtained from 56 patients with lumbar spinal canal stenosis and 21 ligamentum flavum specimens obtained from 19 patients with lumbar disk herniation. We evaluated histopathologic findings and clinicoradiologic manifestations, such as thickness of the ligamentum flavum and lumbar spinal segmental instability. We found that all 95 ligamentum flavum specimens resected from patients with lumbar spinal canal stenosis had amyloid deposits, which we classified into two types, transthyretin-positive and transthyretin-negative, and that transthyretin amyloid formation in the ligamentum flavum of patients with lumbar spinal canal stenosis was an age-associated phenomenon. The amount of amyloid in the ligamentum flavum was related to clinical manifestations of lumbar spinal canal stenosis, such as thickness of the ligamentum flavum and lumbar spinal segmental instability, in the patients with lumbar spinal canal stenosis with transthyretin-positive amyloid deposits. To our knowledge, this report is the first to show clinicopathologic correlations in transthyretin amyloid deposits of the ligamentum flavum. In conclusion, transthyretin amyloid deposits in the ligamentum flavum may be related to the pathogenesis of lumbar spinal canal stenosis in elderly patients.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Amyloid deposits in transthyretin-derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology.

          The pathological fibrillar deposits found in the heart and other organs of patients with senile systemic amyloidosis (SSA) and Swedish familial amyloidotic polyneuropathy (FAP) contain wild-type (wt) and a mutant form of transthyretin (TTR), respectively. Previously, it was reported that these two forms of amyloid have different molecular features and it was thus postulated that the mechanism responsible for TTR fibrillogenesis in SSA and FAP may differ. To document further the nature of the amyloid in these entities, detailed morphological, histochemical, immunological, and structural analyses of specimens obtained from 14 individuals with SSA and 11 Swedish FAP patients have been performed. Two distinct patterns of amyloid deposition (designated A and B) were evident. In pattern A, found in all SSA and five of 11 FAP cases, the amyloid had a homogeneous but patchy distribution within the sub-endocardium, sub-epicardium, and myocardium; exhibited weak congophilia and green birefringence; and was composed of tightly packed, short, unorientated fibrils. This material contained mainly approximately 79-residue C-terminal fragments of the amyloidogenic precursor protein. In pattern B, seen in the six other FAP patients, the amyloid appeared as thin streaks throughout the cardiac tissue; often surrounded individual muscle cells; was strongly congophilic and birefringent; had long fibrils arranged in parallel bundles, often penetrating into myocytes; and was composed of virtually intact TTR molecules. These findings provide substantive evidence for the morphological and structural heterogeneity of TTR fibrils and suggest that the two types of deposition may reflect fundamental differences in the pathogenesis of the TTR-associated amyloidoses. Copyright 2005 Pathological Society of Great Britain and Ireland
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis.

            The Nomenclature Committee of the International Society of Amyloidosis (ISA) met during the XIIIth International Symposium, May 6-10, 2012, Groningen, The Netherlands, to formulate recommendations on amyloid fibril protein nomenclature and to consider newly identified candidate amyloid fibril proteins for inclusion in the ISA Amyloid Fibril Protein Nomenclature List. The need to promote utilization of consistent and up to date terminology for both fibril chemistry and clinical classification of the resultant disease syndrome was emphasized. Amyloid fibril nomenclature is based on the chemical identity of the amyloid fibril forming protein; clinical classification of the amyloidosis should be as well. Although the importance of fibril chemistry to the disease process has been recognized for more than 40 years, to this day the literature contains clinical and histochemical designations that were used when the chemical diversity of amyloid diseases was poorly understood. Thus, the continued use of disease classifications such as familial amyloid neuropathy and familial amyloid cardiomyopathy generates confusion. An amyloid fibril protein is defined as follows: the protein must occur in body tissue deposits and exhibit both affinity for Congo red and green birefringence when Congo red stained deposits are viewed by polarization microscopy. Furthermore, the chemical identity of the protein must have been unambiguously characterized by protein sequence analysis when so is practically possible. Thus, in nearly all cases, it is insufficient to demonstrate mutation in the gene of a candidate amyloid protein; the protein itself must be identified as an amyloid fibril protein. Current ISA Amyloid Fibril Protein Nomenclature Lists of 30 human and 10 animal fibril proteins are provided together with a list of inclusion bodies that, although intracellular, exhibit some or all of the properties of the mainly extracellular amyloid fibrils.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Radiologic diagnosis of degenerative lumbar spinal instability.

              A lumbar motion segment is considered to be unstable when it exhibits abnormal movement. This movement can be abnormal in quality (abnormal coupling patterns) or in quantity (abnormal increased motion). This instability can be symptomatic or asymptomatic, depending on the demands made on the motion segment. Pain is a signal of impending or actual tissue damage, and when present it indicates that a certain mechanical threshold has been reached or transgressed. Repeated transgressions will damage the stabilizing structures beyond physiologic repair, thus putting abnormal demands on secondary restraints. Radiographic study with dynamic views obtained in the frontal and lateral planes identify unstable states in the clinical environment.
                Bookmark

                Author and article information

                Journal
                Modern Pathology
                Mod Pathol
                Springer Nature
                0893-3952
                1530-0285
                February 2015
                September 5 2014
                February 2015
                : 28
                : 2
                : 201-207
                Article
                10.1038/modpathol.2014.102
                25189643
                523c710f-b816-497c-aed5-baef942750b5
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article