12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Associations between both legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The Isomers of C8 health project in China

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: not found
          • Article: not found

          Homeostasis model assessment: insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use and abuse of HOMA modeling.

            Homeostatic model assessment (HOMA) is a method for assessing beta-cell function and insulin resistance (IR) from basal (fasting) glucose and insulin or C-peptide concentrations. It has been reported in >500 publications, 20 times more frequently for the estimation of IR than beta-cell function. This article summarizes the physiological basis of HOMA, a structural model of steady-state insulin and glucose domains, constructed from physiological dose responses of glucose uptake and insulin production. Hepatic and peripheral glucose efflux and uptake were modeled to be dependent on plasma glucose and insulin concentrations. Decreases in beta-cell function were modeled by changing the beta-cell response to plasma glucose concentrations. The original HOMA model was described in 1985 with a formula for approximate estimation. The computer model is available but has not been as widely used as the approximation formulae. HOMA has been validated against a variety of physiological methods. We review the use and reporting of HOMA in the literature and give guidance on its appropriate use (e.g., cohort and epidemiological studies) and inappropriate use (e.g., measuring beta-cell function in isolation). The HOMA model compares favorably with other models and has the advantage of requiring only a single plasma sample assayed for insulin and glucose. In conclusion, the HOMA model has become a widely used clinical and epidemiological tool and, when used appropriately, it can yield valuable data. However, as with all models, the primary input data need to be robust, and the data need to be interpreted carefully.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures.

              Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications.
                Bookmark

                Author and article information

                Journal
                Environment International
                Environment International
                Elsevier BV
                01604120
                January 2022
                January 2022
                : 158
                : 106913
                Article
                10.1016/j.envint.2021.106913
                34624590
                525aba4b-8165-4563-985f-df1d9d273ad9
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article