14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Efficacy of aerial ultra-low volume applications of two novel water-based formulations of unsynergized pyrethroids against riceland mosquitoes in Greece.

      Journal of the American Mosquito Control Association
      Aerosols, Agriculture, Animals, Culicidae, drug effects, Greece, Insecticide Resistance, Insecticides, pharmacology, Mosquito Control, methods, Nitriles, Oryza sativa, Pyrethrins, Water, Weather

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We assessed the efficacy of ultra-low volume aerial adulticiding with 2 new water-based, unsynergized formulations of Aqua-K-Othrin (2% deltamethrin) and Pesguard S102 (10% d-phenothrin) against the riceland mosquitoes of Greece. A helicopter with Global Positioning System (GPS) navigation, real-time weather recording, and spray dispersal modeling (AgDISP) was utilized to accurately treat the experimental blocks by adjusting spray line positions to changing meteorological conditions. Two application rates were applied per formulation that corresponded to 0.75 and 1.00 g AI/ha of deltamethrin and 7.50 and 10.00 g AI/ha of d-phenothrin. The mosquitoes used for the trials were the main nuisance species found in rice field areas of Thessaloniki, which were primarily Aedes caspius, followed by Culex modestus and Anopheles sacharovi. Overall mean mortality of caged mosquitoes was 69.2% and 64.8% for deltamethrin and d-phenothrin, respectively. Mean population decrease in wild mosquito populations within the treatment areas was 76.5% and 78% for deltamethrin and d-phenothrin, respectively. The AgDISP dispersal model, coupled with GPS navigation and real-time weather recording, enabled accurate placement of the spray cloud such that the majority of the treatment area received sufficiently high droplet densities to result in uniform caged-mosquito mortality across all sampling sites.

          Related collections

          Author and article information

          Comments

          Comment on this article