21
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A DNA barcode library for ground beetles of Germany: the genus Agonum Bonelli, 1810 (Insecta, Coleoptera, Carabidae)

      , , ,
      Deutsche Entomologische Zeitschrift
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ground beetle genus Agonum Bonelli, 1810 is a large genus of the tribe Platynini with many species that show high amounts of intraspecific variations, making a correct identification challenging. As part of the German Barcode of Life initiative, this publication provides a comprehensive DNA barcode library for species of Agonum that are reported for Germany. In total, DNA barcodes from 258 beetles and 23 species were analysed using the Barcode of Life Data System (BOLD) workbench, including sequences from former studies and 68 newly-generated sequences. The neighbour-joining analyses, based on K2P distances, revealed distinct clustering for all studied species, with unique Barcode Index Numbers (BINs) for 15 species (65%). BIN sharing but distinct clustering was found for three species pairs: Agonum micans/Agonum scitulum, Agonum impressum/Agonum sexpunctatum and Agonum duftschmidi/Agonum emarginatum. The given dataset and its analysis represent another important step in generating a comprehensive DNA barcode library for the ground beetles of Germany and Central Europe in terms of modern biodiversity research.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

          The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.

            Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or "transition" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or "transversion" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.

              The recently-developed statistical method known as the "bootstrap" can be used to place confidence intervals on phylogenies. It involves resampling points from one's own data, with replacement, to create a series of bootstrap samples of the same size as the original data. Each of these is analyzed, and the variation among the resulting estimates taken to indicate the size of the error involved in making estimates from the original data. In the case of phylogenies, it is argued that the proper method of resampling is to keep all of the original species while sampling characters with replacement, under the assumption that the characters have been independently drawn by the systematist and have evolved independently. Majority-rule consensus trees can be used to construct a phylogeny showing all of the inferred monophyletic groups that occurred in a majority of the bootstrap samples. If a group shows up 95% of the time or more, the evidence for it is taken to be statistically significant. Existing computer programs can be used to analyze different bootstrap samples by using weights on the characters, the weight of a character being how many times it was drawn in bootstrap sampling. When all characters are perfectly compatible, as envisioned by Hennig, bootstrap sampling becomes unnecessary; the bootstrap method would show significant evidence for a group if it is defined by three or more characters.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Deutsche Entomologische Zeitschrift
                DEZ
                Pensoft Publishers
                1860-1324
                1435-1951
                October 19 2020
                October 19 2020
                : 67
                : 2
                : 197-207
                Article
                10.3897/dez.67.56163
                528bf1c9-7b27-4bc2-946e-7a0bb39fafd9
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article