Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Glomerular Transcriptome Profiles in Focal Glomerulosclerosis: New Genes and Pathways for Steroid Resistance

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Patients with focal segmental glomerulosclerosis (FSGS) characterized by steroid-resistant nephrotic syndrome (SRNS) are prone to progress to ESRD. Mechanism for the FSGS patients’ response to steroid treatment is still unknown and currently, it is impossible to predict the steroid resistance before treatment of patients with FSGS. Methods: To identify biomarkers and potential therapeutic targets of FSGS patients with SRNS, patients diagnosed as kidney biopsy-proven FSGS and nephrotic syndrome (NS) were prospectively enrolled. They were divided into 2 groups, steroid-sensitive NS and SRNS based on their treatment response. Cortical regions were selected from biopsied renal tissues, and glomeruli were isolated under an inverted microscope. RNA was prepared from the isolated glomeruli and further used for microarray analysis. Followed by multiple analyses, the top 6 highest and lowest, and a selected panel of differentially expressed genes obtained and their related pathways were validated via real-time PCR, western blot, and measurement of reactive oxygen species (ROS). Results: In SRNS group, we discovered that the most significant up-regulated pathway was primarily related to cellular amino acid and derivative metabolic process. Meanwhile, the most significant down-regulated pathway was primarily involved in anatomical structure morphogenesis. Moreover, we found NADPH oxidase 4 ( NOX4), one of the key regulators of renal ROS, at a much higher level in SRNS both at transcriptomic and proteomic levels. We also found the levels of ROS, p-p38 MAPK and matrix metalloproteinase (MMP)-2, which were all regulated by NOX4, were also higher in glomeruli isolated from SRNS patients. At last, we detected stimulated by retinoic acid gene 6 homolog (STRA6), a cell surface receptor formerly known as a gene preventing podocytes from over-proliferative lesion induced by HIV infection and was up-regulated by retinoic acid, expressed at a much higher level in SRNS kidneys. Conclusion: We found 2 potential mechanisms underline the SRNS, NOX4/ROS/P38 MAPK/MMP-2 pathway and STRA6. Our findings provided new insights into the steroid resistance.

          Related collections

          Author and article information

          Journal
          AJN
          Am J Nephrol
          10.1159/issn.0250-8095
          American Journal of Nephrology
          S. Karger AG
          0250-8095
          1421-9670
          2020
          June 2020
          29 April 2020
          : 51
          : 6
          : 442-452
          Affiliations
          Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
          Author notes
          *Jingyuan Xie, MD or Chen Nan, MD, Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No 197, Ruijin Er Road, Shanghai 200025 (China), E-Mail nephroxie@163.com or cnrj100@126.com
          Article
          505956 Am J Nephrol 2020;51:442–452
          10.1159/000505956
          32348995
          © 2020 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          Page count
          Figures: 4, Tables: 1, Pages: 11
          Categories
          Patient-Oriented, Translational Research: Research Article

          Comments

          Comment on this article