28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Photosensitivity of Rhodopsin Bleaching and Light-Induced Increases of Fundus Reflectance in Mice Measured In Vivo With Scanning Laser Ophthalmoscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To quantify bleaching-induced changes in fundus reflectance in the mouse retina.

          Methods

          Light reflected from the fundus of albino (Balb/c) and pigmented (C57Bl/6J) mice was measured with a multichannel scanning laser ophthalmoscopy optical coherence tomography (SLO-OCT) optical system. Serial scanning of small retinal regions was used for bleaching rhodopsin and measuring reflectance changes.

          Results

          Serial scanning generated a saturating reflectance increase centered at 501 nm with a photosensitivity of 1.4 × 10 −8 per molecule μm 2 in both strains, 2-fold higher than expected were irradiance at the rod outer segment base equal to that at the retinal surface. The action spectrum of the reflectance increase corresponds to the absorption spectrum of mouse rhodopsin in situ. Spectra obtained before and after bleaching were fitted with a model of fundus reflectance, quantifying contributions from loss of rhodopsin absorption with bleaching, absorption by oxygenated hemoglobin (HbO 2) in the choroid (Balb/c), and absorption by melanin (C57Bl/6J). Both mouse strains exhibited light-induced broadband reflectance changes explained as bleaching-induced reflectivity increases at photoreceptor inner segment/outer segment (IS/OS) junctions and OS tips.

          Conclusions

          The elevated photosensitivity of rhodopsin bleaching in vivo is explained by waveguide condensing of light in propagation from rod inner segment (RIS) to rod outer segment (ROS). The similar photosensitivity of rhodopsin in the two strains reveals that little light backscattered from the sclera can enter the ROS. The bleaching-induced increases in reflectance at the IS/OS junctions and OS tips resemble results previously reported in human cones, but are ascribed to rods due to their 30/1 predominance over cones in mice and to the relatively minor amount of cone M-opsin in the regions scanned.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Dark adaptation and the retinoid cycle of vision.

          Following exposure of our eye to very intense illumination, we experience a greatly elevated visual threshold, that takes tens of minutes to return completely to normal. The slowness of this phenomenon of "dark adaptation" has been studied for many decades, yet is still not fully understood. Here we review the biochemical and physical processes involved in eliminating the products of light absorption from the photoreceptor outer segment, in recycling the released retinoid to its original isomeric form as 11-cis retinal, and in regenerating the visual pigment rhodopsin. Then we analyse the time-course of three aspects of human dark adaptation: the recovery of psychophysical threshold, the recovery of rod photoreceptor circulating current, and the regeneration of rhodopsin. We begin with normal human subjects, and then analyse the recovery in several retinal disorders, including Oguchi disease, vitamin A deficiency, fundus albipunctatus, Bothnia dystrophy and Stargardt disease. We review a large body of evidence showing that the time-course of human dark adaptation and pigment regeneration is determined by the local concentration of 11-cis retinal, and that after a large bleach the recovery is limited by the rate at which 11-cis retinal is delivered to opsin in the bleached rod outer segments. We present a mathematical model that successfully describes a wide range of results in human and other mammals. The theoretical analysis provides a simple means of estimating the relative concentration of free 11-cis retinal in the retina/RPE, in disorders exhibiting slowed dark adaptation, from analysis of psychophysical measurements of threshold recovery or from analysis of pigment regeneration kinetics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In search of the visual pigment template.

            Absorbance spectra were recorded by microspectrophotometry from 39 different rod and cone types representing amphibians. reptiles, and fishes, with A1- or A2-based visual pigments and lambdamax ranging from 357 to 620 nm. The purpose was to investigate accuracy limits of putative universal templates for visual pigment absorbance spectra, and if possible to amend the templates to overcome the limitations. It was found that (1) the absorbance spectrum of frog rhodopsin extract very precisely parallels that of rod outer segments from the same individual, with only a slight hypsochromic shift in lambdamax, hence templates based on extracts are valid for absorbance in situ: (2) a template based on the bovine rhodopsin extract data of Partridge and De Grip (1991) describes the absorbance of amphibian rod outer segments excellently, contrary to recent electrophysiological results; (3) the lambdamax/lambda invariance of spectral shape fails for A1 pigments with small lambdamax and for A2 pigments with large lambdamax, but the deviations are systematic and can be readily incorporated into, for example, the Lamb (1995) template. We thus propose modified templates for the main "alpha-band" of A1 and A2 pigments and show that these describe both absorbance and spectral sensitivities of photoreceptors over the whole range of lambdamax. Subtraction of the alpha-band from the full absorbance spectrum leaves a "beta-band" described by a lambdamax-dependent Gaussian. We conclude that the idea of universal templates (one for A1- and one for A2-based visual pigments) remains valid and useful at the present level of accuracy of data on photoreceptor absorbance and sensitivity. The sum of our expressions for the alpha- and beta-band gives a good description for visual pigment spectra with lambdamax > 350 nm.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Rpe65 Leu450Met variation increases retinal resistance against light-induced degeneration by slowing rhodopsin regeneration.

              Excessive light can cause retinal degeneration and may be an environmental cofactor accelerating retinal dystrophies and age-related diseases. In rodent models, the light damage susceptibility (LDS) of the retina is determined genetically. In two mouse strains, with different degrees of LDS, a Leu450Met variation in the pigment epithelial protein RPE65 was shown recently to cosegregate with low LDS. Because light damage is rhodopsin-mediated, and RPE65 is essential for the regeneration of rhodopsin in the visual cycle, we analyzed this variation regarding rhodopsin metabolism and LDS in four mouse strains. We found that, in contrast to previous assertions, LDS does not correlate with the maximal retinal content of rhodopsin present after dark adaptation. Instead, LDS correlated positively with the kinetics of rhodopsin regeneration, which determine rhodopsin availability during light exposure. Light damage occurred after absorption of a threshold dose of photons and thus fast regeneration, as observed in those two strains having Leu at position 450 of RPE65, was correlated with the occurrence of photoreceptor apoptosis after short exposure. In contrast, mice with the Leu450Met variation of Rpe65 regenerated rhodopsin with slow kinetics and showed an increased resistance to light-induced retinal degeneration. In these mice, RPE65 protein levels were reduced by a post-transcriptional mechanism. F(1) hybrid mice, carrying one normal and one variant Rpe65 gene, had intermediate levels of the corresponding protein and showed intermediate rhodopsin regeneration kinetics and an intermediate LDS. Thus, none of the two variants of Rpe65 had a dominant effect.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                iovs
                iovs
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                12 July 2016
                July 2016
                : 57
                : 8
                : 3650-3664
                Affiliations
                [1 ]Research Investments in Science and Engineering EyePod Small Animal Imaging Facility, University of California-Davis, Davis, California, United States
                [2 ]Department of Ophthalmology and Vision Science, University of California-Davis, Davis, California, United States
                [3 ]Departments of Physiology and Membrane Biology and of Cell Biology and Human Anatomy, University of California-Davis, Davis, California, United States
                Author notes
                Correspondence: Edward N. Pugh Jr, Department of Physiology & Membrane Biology, and of Cell Biology & Human Anatomy, University of California, Davis, 3301 Tupper Hall, 1 Shields Avenue, Davis, CA 95616, USA; enpugh@ 123456ucdavis.edu .
                Article
                iovs-57-07-44 IOVS-16-19393
                10.1167/iovs.16-19393
                4959838
                27403994
                52b162c3-d3a3-4669-82c1-b72162ba0e78

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 19 February 2016
                : 29 April 2016
                Categories
                Retina

                rhodopsin bleaching,fundus reflectometry,near infrared scattering

                Comments

                Comment on this article