35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zoledronic acid inhibits vasculogenic mimicry in murine osteosarcoma cell line in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          To study the effects of zoledronic acid (ZA) on the vasculogenic mimicry of osteosarcoma cells in vitro.

          Methods

          A Three-dimensional culture of LM8 osteosarcoma cells on a type I collagen matrix was used to investigate whether osteosarcoma cells can develop vasculogenic mimicry, and to determine the effects of ZA on this process. In addition, the cellular ultrastructural changes were observed using scanning electron microscopy and laser confocal microscopy. The effects of ZA on the translocation of RhoA protein from the cytosol to the membrane in LM8 cells were measured via immunoblotting.

          Results

          ZA inhibited the development of vasculogenic mimicry by the LM8 osteosarcoma cells, decreased microvilli formation on the cell surface, and disrupted the F-actin cytoskeleton. ZA prevented translocation of RhoA protein from the cytosol to the membrane in LM8 cells.

          Conclusions

          ZA can impair RhoA membrane localization in LM8 cells, causing obvious changes in the ultrastructure of osteosarcoma cells and induce cell apoptosis, which may be one of the underlying mechanisms by which the agent inhibits the development of vasculogenic mimicry by the LM8 cells.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry.

          Tissue sections from aggressive human intraocular (uveal) and metastatic cutaneous melanomas generally lack evidence of significant necrosis and contain patterned networks of interconnected loops of extracellular matrix. The matrix that forms these loops or networks may be solid or hollow. Red blood cells have been detected within the hollow channel components of this patterned matrix histologically, and these vascular channel networks have been detected in human tumors angiographically. Endothelial cells were not identified within these matrix-embedded channels by light microscopy, by transmission electron microscopy, or by using an immunohistochemical panel of endothelial cell markers (Factor VIII-related antigen, Ulex, CD31, CD34, and KDR[Flk-1]). Highly invasive primary and metastatic human melanoma cells formed patterned solid and hollow matrix channels (seen in tissue sections of aggressive primary and metastatic human melanomas) in three-dimensional cultures containing Matrigel or dilute Type I collagen, without endothelial cells or fibroblasts. These tumor cell-generated patterned channels conducted dye, highlighting looping patterns visualized angiographically in human tumors. Neither normal melanocytes nor poorly invasive melanoma cells generated these patterned channels in vitro under identical culture conditions, even after the addition of conditioned medium from metastatic pattern-forming melanoma cells, soluble growth factors, or regimes of hypoxia. Highly invasive and metastatic human melanoma cells, but not poorly invasive melanoma cells, contracted and remodeled floating hydrated gels, providing a biomechanical explanation for the generation of microvessels in vitro. cDNA microarray analysis of highly invasive versus poorly invasive melanoma tumor cells confirmed a genetic reversion to a pluripotent embryonic-like genotype in the highly aggressive melanoma cells. These observations strongly suggest that aggressive melanoma cells may generate vascular channels that facilitate tumor perfusion independent of tumor angiogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry.

            Glioblastoma is one of the most angiogenic human tumours and endothelial proliferation is a hallmark of the disease. A better understanding of glioblastoma vasculature is needed to optimize anti-angiogenic therapy that has shown a high but transient efficacy. We analysed human glioblastoma tissues and found non-endothelial cell-lined blood vessels that were formed by tumour cells (vasculogenic mimicry of the tubular type). We hypothesized that CD133+ glioblastoma cells presenting stem-cell properties may express pro-vascular molecules allowing them to form blood vessels de novo. We demonstrated in vitro that glioblastoma stem-like cells were capable of vasculogenesis and endothelium-associated genes expression. Moreover, a fraction of these glioblastoma stem-like cells could transdifferentiate into vascular smooth muscle-like cells. We describe here a new mechanism of alternative glioblastoma vascularization and open a new perspective for the antivascular treatment strategy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signalling pathways in vasculogenic mimicry.

              Solid tumour growth is dependent on the development of an adequate blood supply. For years, sprouting angiogenesis has been considered an exclusive mechanism of tumour vascularization. However, over the last years, several other mechanisms have been identified, including vessel-co-option, intussusception, recruitment of endothelial precursor cells (EPCs) and even mechanisms that do not involve endothelial cells, a process called vasculogenic mimicry (VM). The latter describes a mechanism by which highly aggressive tumour cells can form vessel-like structures themselves, by virtue of their high plasticity. VM has been observed in several tumour types and its occurrence is strongly associated with a poor prognosis. This review will focus on signalling molecules and cascades involved in VM. In addition, we will discuss the presence of VM in relation to ongoing cancer research. Finally, we describe the clinical significance of VM regarding anti-angiogenesis treatment modalities. Copyright 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                BMC Musculoskelet Disord
                BMC Musculoskeletal Disorders
                BioMed Central
                1471-2474
                2011
                30 June 2011
                : 12
                : 146
                Affiliations
                [1 ]Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
                [2 ]Department of Orthopaedics, Ningbo No.6 Hospital, Ningbo, 315040, China
                Article
                1471-2474-12-146
                10.1186/1471-2474-12-146
                3136422
                21718535
                52b7dbc3-9085-4115-b0a7-6029347f74a0
                Copyright ©2011 Fu et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 June 2011
                : 30 June 2011
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article