Blog
About

21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stabilization of XIAP mRNA through the RNA binding protein HuR regulated by cellular polyamines

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nucleic Acids Res. 2009; 37, 7623–7637. doi: 10.1093/nar/gkp755 The editors express a note of concern regarding the above article. The editors wish to alert the readers that questions have been raised about the validity of some of the figures presented in this article. The questions specifically concern Figures 1B, 6A and 8A. There are indications that the molecular weight markers have been altered in Figures 1B and 6A. The background in Figure 8A suggests that the lanes might originate from different blots. We consider that this does not affect the validity of the results and the conclusions of the study, however wish to alert our readership to these concerns. Keith Fox, Senior Executive Editor, Nucleic Acids Research Barry Stoddard, Senior Executive Editor, Nucleic Acids Research

          Related collections

          Most cited references 78

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of cell death protease caspase-9 by phosphorylation.

          Caspases are intracellular proteases that function as initiators and effectors of apoptosis. The kinase Akt and p21-Ras, an Akt activator, induced phosphorylation of pro-caspase-9 (pro-Casp9) in cells. Cytochrome c-induced proteolytic processing of pro-Casp9 was defective in cytosolic extracts from cells expressing either active Ras or Akt. Akt phosphorylated recombinant Casp9 in vitro on serine-196 and inhibited its protease activity. Mutant pro-Casp9(Ser196Ala) was resistant to Akt-mediated phosphorylation and inhibition in vitro and in cells, resulting in Akt-resistant induction of apoptosis. Thus, caspases can be directly regulated by protein phosphorylation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA regulons: coordination of post-transcriptional events.

             Jack Keene (2007)
            Recent findings demonstrate that multiple mRNAs are co-regulated by one or more sequence-specific RNA-binding proteins that orchestrate their splicing, export, stability, localization and translation. These and other observations have given rise to a model in which mRNAs that encode functionally related proteins are coordinately regulated during cell growth and differentiation as post-transcriptional RNA operons or regulons, through a ribonucleoprotein-driven mechanism. Here I describe several recently discovered examples of RNA operons in budding yeast, fruitfly and mammalian cells, and their potential importance in processes such as immune response, oxidative metabolism, stress response, circadian rhythms and disease. I close by considering the evolutionary wiring and rewiring of these combinatorial post-transcriptional gene-expression networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relief of microRNA-mediated translational repression in human cells subjected to stress.

              In metazoans, most microRNAs imperfectly base-pair with the 3' untranslated region (3'UTR) of target mRNAs and prevent protein accumulation by either repressing translation or inducing mRNA degradation. Examples of specific mRNAs undergoing microRNA-mediated repression are numerous, but whether the repression is a reversible process remains largely unknown. Here we show that cationic amino acid transporter 1 (CAT-1) mRNA and reporters bearing its 3'UTR can be relieved from the microRNA miR-122-induced inhibition in human hepatocarcinoma cells subjected to different stress conditions. The derepression of CAT-1 mRNA is accompanied by its release from cytoplasmic processing bodies and its recruitment to polysomes. The derepression requires binding of HuR, an AU-rich-element binding protein, to the 3'UTR of CAT-1 mRNA. We propose that proteins interacting with the 3'UTR will generally act as modifiers altering the potential of miRNAs to repress gene expression.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                April 2014
                10 March 2014
                10 March 2014
                : 42
                : 6
                : 4143
                Article
                gku196
                10.1093/nar/gku196
                3973343
                24615811
                © The Author(s) 2014. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                Page count
                Pages: 1
                Categories
                Editorial Expression of Concern

                Genetics

                Comments

                Comment on this article