3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1β-stimulated human osteoarthritis chondrocytes: potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5

      , ,
      European Journal of Nutrition
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA-140 plays dual roles in both cartilage development and homeostasis.

          Osteoarthritis (OA), the most prevalent aging-related joint disease, is characterized by insufficient extracellular matrix synthesis and articular cartilage degradation, mediated by several proteinases, including Adamts-5. miR-140 is one of a very limited number of noncoding microRNAs (miRNAs) specifically expressed in cartilage; however, its role in development and/or tissue maintenance is largely uncharacterized. To examine miR-140 function in tissue development and homeostasis, we generated a mouse line through a targeted deletion of miR-140. miR-140(-/-) mice manifested a mild skeletal phenotype with a short stature, although the structure of the articular joint cartilage appeared grossly normal in 1-mo-old miR-140(-/-) mice. Interestingly, miR-140(-/-) mice showed age-related OA-like changes characterized by proteoglycan loss and fibrillation of articular cartilage. Conversely, transgenic (TG) mice overexpressing miR-140 in cartilage were resistant to antigen-induced arthritis. OA-like changes in miR-140-deficient mice can be attributed, in part, to elevated Adamts-5 expression, regulated directly by miR-140. We show that miR-140 regulates cartilage development and homeostasis, and its loss contributes to the development of age-related OA-like changes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses.

            MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue-specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA-140 (miR-140). To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR-140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin-1beta (IL-1beta) on miR-140 expression. Double-stranded miR-140 (ds-miR-140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA. Microarray analysis showed that miR-140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR-140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR-140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL-1beta suppressed miR-140 expression. Transfection of chondrocytes with ds-miR-140 down-regulated IL-1beta-induced ADAMTS5 expression and rescued the IL-1beta-dependent repression of AGGRECAN gene expression. This study shows that miR-140 has a chondrocyte differentiation-related expression pattern. The reduction in miR-140 expression in OA cartilage and in response to IL-1beta may contribute to the abnormal gene expression pattern characteristic of OA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes.

              Aberrant posttranscriptional regulation of matrix metalloproteinases (MMPs) by microRNA has emerged as an important factor in human diseases. The aim of this study was to determine whether the expression of MMP-13 in human osteoarthritis (OA) chondrocytes is regulated by microRNA. Chondrocytes were stimulated with interleukin-1beta (IL-1beta) in vitro. Total RNA was prepared using TRIzol reagent. Polymerase chain reaction (PCR)-based arrays were used to determine the expression profile of 352 human microRNA. Gene expression was quantified using TaqMan assays, and microRNA targets were identified using bioinformatics. Transfection with reporter construct and microRNA mimic was used to verify suppression of target messenger RNA (mRNA). Gene expression of argonaute and Dicer was determined by reverse transcription-PCR, and expression of protein was determined by immunoblotting. The role of activated MAP kinases (MAPKs) and NF-kappaB was evaluated using specific inhibitors. In IL-1beta-stimulated OA chondrocytes, 42 microRNA were down-regulated, 2 microRNA were up-regulated, and the expression of 308 microRNA remained unchanged. In silico analysis identified a sequence in the 3'-untranslated region (3'-UTR) of MMP-13 mRNA complementary to the seed sequence of microRNA-27b (miR-27b). Increased expression of MMP-13 correlated with down-regulation of miR-27b. Overexpression of miR-27b suppressed the activity of a reporter construct containing the 3'-UTR of human MMP-13 mRNA and inhibited the IL-1beta-induced expression of MMP-13 protein in chondrocytes. NF-kappaB and MAPK activation down-regulated the expression of miR-27b. Our data demonstrated the expression of miR-27b in both normal and OA chondrocytes. Furthermore, IL-1beta-induced activation of signal transduction pathways associated with the expression of MMP-13 down-regulated the expression of miR-27b. Thus, miR-27b may play a role in regulating the expression of MMP-13 in human chondrocytes.
                Bookmark

                Author and article information

                Journal
                European Journal of Nutrition
                Eur J Nutr
                Springer Science and Business Media LLC
                1436-6207
                1436-6215
                April 2018
                January 21 2017
                April 2018
                : 57
                : 3
                : 917-928
                Article
                10.1007/s00394-016-1375-x
                28110479
                52c7e457-353a-4a6b-b61b-12416296e599
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article