30
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Intron Mutation in the ACVRL1 May Be Associated with a Transcriptional Regulation Defect in a Chinese Family with Hereditary Hemorrhagic Telangiectasia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To identify a novel pathogenic gene mutation present in a Chinese family with hereditary hemorrhagic telangiectasia (HHT) and to determine if an intron mutation may influence the transcriptional activity of the ACVRL1 gene.

          Methods

          HHT family members were ascertained following the presentation of proband and involved subjects. All family members (n = 5) and 113 healthy individuals were genotyped for the variant in intron 6 c.772+27G>C of ACVRL1 gene. The genomic structure of ACVRL1 in affected HHT patients and healthy individuals was determined by long range PCR and sequencing. The expression of ACVRL1 mRNA and protein in patients with HHT was evaluated using real-time polymerase chain reaction and immunoblot analysis. Luciferase activity assay and electrophoretic mobility shift assay (EMSA) were performed to uncover the mechanism of intron-related transcriptional regulation.

          Results

          Only one novel mutation in intron 6 (c.772+27G>C) of ACVRL1 gene, no other mutation, abnormal splice, gross genomic deletion or rearrangement was found in this HHT2 family. Compared with healthy individuals, ACVRL1 mRNA and protein were significantly decreased in affected HHT2 individuals. Luciferase activity assay demonstrated that the transcriptional activity of the mutated ACVRL1 was significantly lower than that of the wild-type of intron 6; EMSA results showed that intron 6 c.772+27G>C mutation was able to inhibit the binding of transcriptional factor Sp1.

          Conclusions

          A novel intron mutation in ACVRL1 gene is associated with familial HHT2. The mechanisms may be involved in the down-regulation of ACVRL1 gene transcription.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome).

          Hereditary Hemorrhagic Telangiectasia (HHT) is easily recognized in individuals displaying the classical triad of epistaxis, telangiectasia, and a suitable family history, but the disease is more difficult to diagnosis in many patients. Serious consequences may result if visceral arteriovenous malformations, particularly in the pulmonary circulation, are unrecognized and left untreated. In spite of the identification of two of the disease-causing genes (endoglin and ALK-1), only a clinical diagnosis of HHT can be provided for the majority of individuals. On behalf of the Scientific Advisory Board of the HHT Foundation International, Inc., we present consensus clinical diagnostic criteria. The four criteria (epistaxes, telangiectasia, visceral lesions and an appropriate family history) are carefully delineated. The HHT diagnosis is definite if three criteria are present. A diagnosis of HHT cannot be established in patients with only two criteria, but should be recorded as possible or suspected to maintain a high index of clinical suspicion. If fewer than two criteria are present, HHT is unlikely, although children of affected individuals should be considered at risk in view of age-related penetration in this disorder. These criteria may be refined as molecular diagnostic tests become available in the next few years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New insights into TGF-beta-Smad signalling.

            Transforming growth factor beta (TGF-beta) initiates its diverse cellular responses by binding to and activating specific cell surface receptors that have intrinsic serine/threonine kinase activity. These activated TGF-beta receptors stimulate the phosphorylation of receptor-regulated Smad proteins, which in turn form complexes with Smad4 that accumulate in the nucleus and regulate the transcription of target genes. TGF-beta responses can be cell-type specific and are dependent on both the concentration of TGF-beta signalling components and the activity of other signal transduction pathways, which can either synergize with or antagonize the TGF-beta pathway. Recent research has provided insights into the specificity determinants of TGF-beta-Smad signalling, including combinatorial ligand-receptor associations, selective interactions between the Smads and other pathway components that are mediated through defined binding motifs, and the differential regulation of duration and intensity of signalling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5.

              Patients with hereditary haemorrhagic telangiectasia (HHT, or Osler-Weber-Rendu syndrome) have variable presentation patterns and a high risk of preventable complications. Diagnostic tests for mutations in endoglin (HHT type 1) and ALK-1 (HHT type 2) are available. Some HHT patients are now known to have HHT-juvenile polyposis overlap syndrome due to Smad4 mutations. Families were ascertained following the presentation of probands for embolization of pulmonary arteriovenous malformations. Genome-wide linkage studies using over 700 polymorphic markers, and sequencing of candidate genes, were performed. In a previously described HHT family unlinked to endoglin or ALK-1, linkage to Smad4 was excluded, and no mutations were identified in the endoglin, ALK-1, or Smad4 genes. Two point LOD scores and recombination mapping identified a 5.4 cM HHT3 disease gene interval on chromosome 5 in which a single haplotype was inherited by all affected members of the pedigree. The remainder of the genome was excluded to a 2-5 cM resolution. We are currently studying a further family potentially linked to HHT3. We conclude that classical HHT with pulmonary involvement can result from mutations in an unidentified gene on chromosome 5. Identification of HHT3 should further illuminate HHT pathogenic mechanisms in which aberrant transforming growth factor (TGF)-beta signalling is implicated.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                27 February 2013
                : 8
                : 2
                : e58031
                Affiliations
                [1]Division of Hematology, Institution of molecular hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
                University of Bonn, Institut of Experimental Hematology and Transfusion Medicine, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GSZ. Performed the experiments: XHS YL QY JL MYD YYL RJL SFL. Analyzed the data: GSZ. Contributed reagents/materials/analysis tools: GSZ MFP. Wrote the paper: GSZ.

                Article
                PONE-D-11-23492
                10.1371/journal.pone.0058031
                3584037
                23460919
                52d00b51-6a55-4e47-a6de-f9a5e035da88
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 November 2011
                : 30 January 2013
                Page count
                Pages: 11
                Funding
                This study was supported in part by public welfare and special-purpose fund (No: 2008-02031) from Ministry of Health; Scientific Research Program for Public Interests from The Health Ministry of China (No: 201202017), and Clinical Research Program from Health Ministry of China (key project 2011–2014). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Genome Expression Analysis
                Molecular Genetics
                Gene Expression
                Genetics
                Genetic Mutation
                Mutagenesis
                Genetic Screens
                Genetics of Disease
                Genomics
                Genome Expression Analysis
                Medicine
                Clinical Genetics
                Autosomal Dominant
                Hematology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article