23
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Android-Based Mobile App (ARVPredictor) for the Detection of HIV Drug-Resistance Mutations and Treatment at the Point of Care: Development Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          HIV/AIDS remains one of the major global human health challenges, especially in resource-limited environments. By 2017, over 77.3 million people were infected with the disease, and approximately 35.4 million individuals had already died from AIDS-related illnesses. Approximately 21.7 million people were accessing ART with significant clinical outcomes. However, numerous challenges are experienced in the delivery and accurate interpretation of data on patients with HIV data by various health care providers at different care levels. Mobile health (mHealth) technology is progressively making inroads into the health sector as well as medical research. Different mobile devices have become common in health care settings, leading to rapid growth in the development of downloadable software specifically designed to fulfill particular health-related purposes.

          Objective

          We developed a mobile-based app called ARVPredictor and demonstrated that it can accurately define HIV-1 drug-resistance mutations in the HIV pol gene for use at the point of care.

          Methods

          ARVPredictor was designed using Android Studio with Java as the programming language and is compatible with both Android and iOS. The app system is hosted on Nginx Server, and network calls are built on PHP’s Laravel framework handled by the Retrofit Library. The DigitalOcean offers a high-performance and stable cloud computing platform for ARVPredictor. This mobile app is enlisted in the Google Play Store as an “ARVPredictor” and the source code is available under MIT permissive license at a GitHub repository. To test for agreement between the ARVPredictor and Stanford HIV Database in detecting HIV subtype and NNRT and NRTI mutations, a total of 100 known HIV sequences were evaluated.

          Results

          The mobile-based app (ARVPredictor) takes in a set of sequences or known mutations (protease, reverse transcriptase and integrase). It then returns inferred levels of resistance to selected nucleoside, nonnucleoside protease, and integrase inhibitors for accurate HIV/AIDS management at the point of care. The ARVPredictor identified similar HIV subtypes in 98/100 sequences compared with the Stanford HIV Database (κ=0.98, indicating near perfect agreement). There were 89/100 major NNRTI and NRTI mutations identified by ARVPredictor, similar to the Stanford HIV Database (κ=0.89, indicating near perfect agreement). Eight mutations classified as major by the Stanford HIV Database were classified as others by ARVPredictor.

          Conclusions

          The ARVPredictor largely agrees with the Stanford HIV Database in identifying both major and minor proteases, reverse transcriptase, and integrase mutations. The app can be conveniently used robustly at the point of care by HIV/AIDS care providers to improve the management of HIV infection.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Interrater reliability: the kappa statistic

          The kappa statistic is frequently used to test interrater reliability. The importance of rater reliability lies in the fact that it represents the extent to which the data collected in the study are correct representations of the variables measured. Measurement of the extent to which data collectors (raters) assign the same score to the same variable is called interrater reliability. While there have been a variety of methods to measure interrater reliability, traditionally it was measured as percent agreement, calculated as the number of agreement scores divided by the total number of scores. In 1960, Jacob Cohen critiqued use of percent agreement due to its inability to account for chance agreement. He introduced the Cohen’s kappa, developed to account for the possibility that raters actually guess on at least some variables due to uncertainty. Like most correlation statistics, the kappa can range from −1 to +1. While the kappa is one of the most commonly used statistics to test interrater reliability, it has limitations. Judgments about what level of kappa should be acceptable for health research are questioned. Cohen’s suggested interpretation may be too lenient for health related studies because it implies that a score as low as 0.41 might be acceptable. Kappa and percent agreement are compared, and levels for both kappa and percent agreement that should be demanded in healthcare studies are suggested.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Systematic Review of Healthcare Applications for Smartphones

            Background Advanced mobile communications and portable computation are now combined in handheld devices called “smartphones”, which are also capable of running third-party software. The number of smartphone users is growing rapidly, including among healthcare professionals. The purpose of this study was to classify smartphone-based healthcare technologies as discussed in academic literature according to their functionalities, and summarize articles in each category. Methods In April 2011, MEDLINE was searched to identify articles that discussed the design, development, evaluation, or use of smartphone-based software for healthcare professionals, medical or nursing students, or patients. A total of 55 articles discussing 83 applications were selected for this study from 2,894 articles initially obtained from the MEDLINE searches. Results A total of 83 applications were documented: 57 applications for healthcare professionals focusing on disease diagnosis (21), drug reference (6), medical calculators (8), literature search (6), clinical communication (3), Hospital Information System (HIS) client applications (4), medical training (2) and general healthcare applications (7); 11 applications for medical or nursing students focusing on medical education; and 15 applications for patients focusing on disease management with chronic illness (6), ENT-related (4), fall-related (3), and two other conditions (2). The disease diagnosis, drug reference, and medical calculator applications were reported as most useful by healthcare professionals and medical or nursing students. Conclusions Many medical applications for smartphones have been developed and widely used by health professionals and patients. The use of smartphones is getting more attention in healthcare day by day. Medical applications make smartphones useful tools in the practice of evidence-based medicine at the point of care, in addition to their use in mobile clinical communication. Also, smartphones can play a very important role in patient education, disease self-management, and remote monitoring of patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human immunodeficiency virus reverse transcriptase and protease sequence database.

              The HIV reverse transcriptase and protease sequence database is an on-line relational database that catalogues evolutionary and drug-related sequence variation in the human immunodeficiency virus (HIV) reverse transcriptase (RT) and protease enzymes, the molecular targets of antiretroviral therapy (http://hivdb.stanford.edu). The database contains a compilation of nearly all published HIV RT and protease sequences, including submissions to GenBank, sequences published in journal articles and sequences of HIV isolates from persons participating in clinical trials. Sequences are linked to data about the source of the sequence, the antiretroviral drug treatment history of the person from whom the sequence was obtained and the results of in vitro drug susceptibility testing. Sequence data on two new molecular targets of HIV drug therapy--gp41 (cell fusion) and integrase--will be added to the database in 2003.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Form Res
                JMIR Form Res
                JFR
                JMIR Formative Research
                JMIR Publications (Toronto, Canada )
                2561-326X
                February 2022
                2 February 2022
                : 6
                : 2
                : e26891
                Affiliations
                [1 ] Centre for Biotechnology and Bioinformatics University of Nairobi Nairobi Kenya
                [2 ] Centre for Virus Research Kenya Medical Research Institute Nairobi Kenya
                [3 ] Centre for Microbiology Research Kenya Medical Research Institute Nairobi Kenya
                Author notes
                Corresponding Author: Beatrice Ongadi betongadi@ 123456gmail.com
                Author information
                https://orcid.org/0000-0001-6687-6927
                https://orcid.org/0000-0002-1943-4920
                https://orcid.org/0000-0002-0571-5190
                https://orcid.org/0000-0003-2350-2890
                https://orcid.org/0000-0002-0151-7103
                Article
                v6i2e26891
                10.2196/26891
                8851341
                35107425
                52d1cd77-01ef-4917-94c1-51da44feb898
                ©Beatrice Ongadi, Raphael Lihana, John Kiiru, Musa Ngayo, George Obiero. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.02.2022.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.

                History
                : 2 January 2021
                : 10 May 2021
                : 18 July 2021
                : 27 November 2021
                Categories
                Original Paper
                Original Paper

                database,mobile android app,hiv/aids,mutation,pol gene,protease,reverse transcriptase,integrase,arvpredictor,mobile app,mhealth,hiv,android,digital health

                Comments

                Comment on this article