63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with Ageing

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Persistent senescence seems to exert detrimental effects fostering ageing and age-related disorders, such as cancer. Chemotherapy is one of the most valuable treatments for cancer, but its clinical application is limited due to adverse side effects. Melatonin is a potent antioxidant and antiageing molecule, is nontoxic, and enhances the efficacy and reduces the side effects of chemotherapy. In this review, we first summarize the mitochondrial protective role of melatonin in the context of chemotherapeutic drug-induced toxicity. Thereafter, we tabulate the protective actions of melatonin against ageing and the harmful roles induced by chemotherapy and chemotherapeutic agents, including anthracyclines, alkylating agents, platinum, antimetabolites, mitotic inhibitors, and molecular-targeted agents. Finally, we discuss several novel directions for future research in this area. The information compiled in this review will provide a comprehensive reference for the protective activities of melatonin in the context of chemotherapy drug-induced toxicity and will contribute to the design of future studies and increase the potential of melatonin as a therapeutic agent.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: not found

          Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor.

          Poly(ADP-ribose) polymerase-1 (PARP-1) protects the genome by functioning in the DNA damage surveillance network. PARP-1 is also a mediator of cell death after ischemia-reperfusion injury, glutamate excitotoxicity, and various inflammatory processes. We show that PARP-1 activation is required for translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus and that AIF is necessary for PARP-1-dependent cell death. N-methyl-N'-nitro-N-nitrosoguanidine, H2O2, and N-methyl-d-aspartate induce AIF translocation and cell death, which is prevented by PARP inhibitors or genetic knockout of PARP-1, but is caspase independent. Microinjection of an antibody to AIF protects against PARP-1-dependent cytotoxicity. These data support a model in which PARP-1 activation signals AIF release from mitochondria, resulting in a caspase-independent pathway of programmed cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK.

            The reactions of N(1) -acetyl-N(2) -formyl-5-methoxykynuramine (AFMK) and N(1) -acetyl-5-methoxykynuramine (AMK) with (•) OH, (•) OOH, and •OOCCl3 radicals have been studied using the density functional theory. Three mechanisms of reaction have been considered: radical adduct formation (RAF), hydrogen transfer (HT), and single electron transfer (SET). Their relative importance for the free radical scavenging activity of AFMK and AMK has been assessed. It was found that AFMK and AMK react with •OH at diffusion-limited rates, regardless of the polarity of the environment, which supports their excellent •OH radical scavenging activity. Both compounds were found to be also very efficient for scavenging •OOCCl3 , but rather ineffective for scavenging •OOH. Regarding their relative activity, it was found that AFMK systematically is a poorer scavenger than AMK and melatonin. In aqueous solution, AMK was found to react faster than melatonin with all the studied free radicals, while in nonpolar environments, the relative efficiency of AMK and melatonin as free radical scavengers depends on the radical with which they are reacting. Under such conditions, melatonin is predicted to be a better •OOH and •OOCCl3 scavenger than AMK, while AMK is predicted to be slightly better than melatonin for scavenging •OH. Accordingly it seems that melatonin and its metabolite AMK constitute an efficient team of scavengers able of deactivating a wide variety of reactive oxygen species, under different conditions. Thus, the presented results support the continuous protection exerted by melatonin, through the free radical scavenging cascade. © 2012 John Wiley & Sons A/S.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations.

              We studied the subcellular levels of melatonin in cerebral cortex and liver of rats under several conditions. The results show that melatonin levels in the cell membrane, cytosol, nucleus, and mitochondrion vary over a 24-hr cycle, although these variations do not exhibit circadian rhythms. The cell membrane has the highest concentration of melatonin followed by mitochondria, nucleus, and cytosol. Pinealectomy significantly increased the content of melatonin in all subcellular compartments, whereas luzindole treatment had little effect on melatonin levels. Administration of 10 mg/kg bw melatonin to sham-pinealectomized, pinealectomized, or continuous light-exposed rats increased the content of melatonin in all subcellular compartments. Melatonin in doses ranging from 40 to 200 mg/kg bw increased in a dose-dependent manner the accumulation of melatonin on cell membrane and cytosol, although the accumulations were 10 times greater in the former than in the latter. Melatonin levels in the nucleus and mitochondria reached saturation with a dose of 40 mg/kg bw; higher doses of injected melatonin did not further cause additional accumulation of melatonin in these organelles. The results suggest some control of extrapineal accumulation or extrapineal production of melatonin and support the existence of regulatory mechanisms in cellular organelles, which prevent the intracellular equilibration of the indolamine. Seemingly, different concentrations of melatonin can be maintained in different subcellular compartments. The data also seem to support a requirement of high doses of melatonin to obtain therapeutic effects. Together, these results add information that assists in explaining the physiology and pharmacology of melatonin. © 2011 John Wiley & Sons A/S.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2020
                21 May 2020
                : 2020
                : 6841581
                Affiliations
                1Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
                2Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
                3State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
                4Department of Cellular and Structural Biology, UT Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
                5Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
                Author notes

                Guest Editor: Cláudia N. Santos

                Author information
                https://orcid.org/0000-0002-5555-2764
                https://orcid.org/0000-0002-2759-0077
                https://orcid.org/0000-0002-4468-8447
                https://orcid.org/0000-0002-6061-0164
                https://orcid.org/0000-0003-2419-9707
                Article
                10.1155/2020/6841581
                7260648
                32566095
                52e3da93-5613-4aba-860f-86a8af4d8c73
                Copyright © 2020 Zhiqiang Ma et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 February 2019
                : 14 May 2019
                : 27 May 2019
                Funding
                Funded by: Fourth Military Medical University
                Award ID: 2018D09
                Funded by: Natural Science Foundation of Shaanxi Province
                Award ID: 2019SF-033
                Award ID: 2016SF-308
                Funded by: National Natural Science Foundation of China
                Award ID: 81871866
                Award ID: 81572252
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article