An ecofriendly solvent polarity based microwave-assisted extraction (MAE) technique was developed for the rapid extraction and isolation of bioactive oleanolic acid from roots of Lantana camara L. Several different influential extraction parameters such as microwave power, extraction time, solvent type, and volume were studied in a systematic fashion for the determination of optimum extraction conditions. Simply modified and rapid high-performance liquid chromatography-diode array detector (HPLC-DAD) method was also developed and validated for quantitative determination of oleanolic acid from roots of L. camara. Under optimum conditions, using a mixture of CHCl 3:MeOH (60:40, v/ v, 15 mL) as a solvent, 600 W microwave powers, and 50 °C temperature for 6 min of MAE produced a maximum yield of 1.23% (dry weight of roots). No degradation of the target analyte was observed at the optimum conditions as evidenced from the recovery studies performed with standard oleanolic acid. The proposed method also showed high degree of reproducibility; hence, it may be useful for maximum extraction and isolation of biologically active oleanolic acid.