11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Restoring subtidal marine macrophytes in the Anthropocene: trajectories and future-proofing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anthropogenic activities have caused profound changes globally in biodiversity, species interactions and ecosystem functions and services. In terrestrial systems, restoration has emerged as a useful approach to mitigate these changes, and is increasingly recognised as a tool to fortify ecosystems against future disturbances. In marine systems, restoration is also gaining traction as a management tool, but it is still comparatively scant and underdeveloped relative to terrestrial environments. Key coastal habitats, such as seaweed forests and seagrass meadows are showing widespread patterns of decline around the world. As these important ecosystems increasingly become the target of emerging marine restoration campaigns, it is important not only to address current environmental degradation issues, but also to focus on the future. Given the rate at which marine and other environments are changing, and given predicted increases in the frequency and magnitude of multiple stressors, we argue for an urgent need for subtidal marine macrophyte restoration efforts that explicitly incorporate future-proofing in their goals. Here we highlight emerging scientific techniques that can help achieve this, and discuss changes to managerial, political and public frameworks that are needed to support scientific innovation and restoration applications at scale.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Depletion, degradation, and recovery potential of estuaries and coastal seas.

          Estuarine and coastal transformation is as old as civilization yet has dramatically accelerated over the past 150 to 300 years. Reconstructed time lines, causes, and consequences of change in 12 once diverse and productive estuaries and coastal seas worldwide show similar patterns: Human impacts have depleted >90% of formerly important species, destroyed >65% of seagrass and wetland habitat, degraded water quality, and accelerated species invasions. Twentieth-century conservation efforts achieved partial recovery of upper trophic levels but have so far failed to restore former ecosystem structure and function. Our results provide detailed historical baselines and quantitative targets for ecosystem-based management and marine conservation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecological consequences of genetic diversity.

            Understanding the ecological consequences of biodiversity is a fundamental challenge. Research on a key component of biodiversity, genetic diversity, has traditionally focused on its importance in evolutionary processes, but classical studies in evolutionary biology, agronomy and conservation biology indicate that genetic diversity might also have important ecological effects. Our review of the literature reveals significant effects of genetic diversity on ecological processes such as primary productivity, population recovery from disturbance, interspecific competition, community structure, and fluxes of energy and nutrients. Thus, genetic diversity can have important ecological consequences at the population, community and ecosystem levels, and in some cases the effects are comparable in magnitude to the effects of species diversity. However, it is not clear how widely these results apply in nature, as studies to date have been biased towards manipulations of plant clonal diversity, and little is known about the relative importance of genetic diversity vs. other factors that influence ecological processes of interest. Future studies should focus not only on documenting the presence of genetic diversity effects but also on identifying underlying mechanisms and predicting when such effects are likely to occur in nature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A framework for community interactions under climate change.

              Predicting the impacts of climate change on species is one of the biggest challenges that ecologists face. Predictions routinely focus on the direct effects of climate change on individual species, yet interactions between species can strongly influence how climate change affects organisms at every scale by altering their individual fitness, geographic ranges and the structure and dynamics of their community. Failure to incorporate these interactions limits the ability to predict responses of species to climate change. We propose a framework based on ideas from global-change biology, community ecology, and invasion biology that uses community modules to assess how species interactions shape responses to climate change. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Marine and Freshwater Research
                Mar. Freshwater Res.
                CSIRO Publishing
                1323-1650
                2019
                2019
                : 70
                : 7
                : 936
                Article
                10.1071/MF18226
                52f481d3-1b37-4f7c-9718-5a13a31cacd8
                © 2019
                History

                Comments

                Comment on this article