+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The impact of spring wheat species and sowing density on soil biochemical properties, content of secondary plant metabolites and the presence of Oulema ssp.


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The physical and chemical properties of the soil are important factors influencing the yield of crops. One of the agrotechnical factors influencing the biochemical properties of soil is sowing density. It affects the yield components, light, moisture and thermal conditions in the canopy and the pressure of pests. Secondary metabolites, many of which are known to act as a defense mechanism against insects, are of importance in the interaction between the crop and abiotic and biotic factors of the habitat. To the best of our knowledge, the studies conducted so far do not sufficiently reveal the impacts of the wheat species and the sowing density, together with the biochemical properties of the soil, on the accumulation of bioactive ingredients in the crop plants, and the subsequent impacts on the occurrence of phytophagic entomofauna in various management systems. Explaining these processes creates an opportunity for more sustainable development of agriculture. The study aimed to determine the effect of wheat species and sowing density on the biochemical properties of the soil, concentrations of biologically active compounds in the plant and the occurrence of insect pests in organic (OPS) and conventional (CPS) production systems. The research was conducted on spring wheat species (Indian dwarf wheat— Triticum sphaerococcum Percival and Persian wheat— Triticum persicum Vavilov) grown in OPS and CPS at sowing densities 400, 500, 600 (seeds m −2). The following analyzes were performed: (i) soil analysis: the activity of catalases (CAT), dehydrogenases (DEH), peroxidases (PER); (ii) plant analysis: total phenolic compounds (TP), chlorogenic acid (CA), antioxidant capacity (FRAP); (iii) entomological analysis of the number of insects— Oulema spp. adults and larvae. Performing analyzes in such a wide (interdisciplinary) scope will allow for a comprehensive understanding of the soil-plant-insect biological transformation evaluation. Our results showed that an increase in soil enzyme activity caused a decrease in TP contents in the wheat grown the OPS. Despite this, both the content of TP and the anti-oxidative activity of the ferric reducing ability of plasma (FRAP) were higher in these wheats. Bioactive compound contents and FRAP were most favoured by the lowest sowing density. Regardless of the production system, the occurrence of the Oulema spp. adults on T. sphaerococcum was the lowest at a sowing density of 500 seeds m −2. The occurrence of this pest’s larvae was lowest at a sowing density of 400 seeds m −2. Research on bioactive compounds in plants, biochemical properties of soil and the occurrence of pests make it possible to comprehensively assess the impact of the sowing density of ancient wheat in the ecological and conventional production system, which is necessary for the development of environmentally sustainable agriculture.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay.

          A simple, automated test measuring the ferric reducing ability of plasma, the FRAP assay, is presented as a novel method for assessing "antioxidant power." Ferric to ferrous ion reduction at low pH causes a colored ferrous-tripyridyltriazine complex to form. FRAP values are obtained by comparing the absorbance change at 593 nm in test reaction mixtures with those containing ferrous ions in known concentration. Absorbance changes are linear over a wide concentration range with antioxidant mixtures, including plasma, and with solutions containing one antioxidant in purified form. There is no apparent interaction between antioxidants. Measured stoichiometric factors of Trolox, alpha-tocopherol, ascorbic acid, and uric acid are all 2.0; that of bilirubin is 4.0. Activity of albumin is very low. Within- and between-run CVs are <1.0 and <3.0%, respectively, at 100-1000 micromol/liter. FRAP values of fresh plasma of healthy Chinese adults: 612-1634 micromol/liter (mean, 1017; SD, 206; n = 141). The FRAP assay is inexpensive, reagents are simple to prepare, results are highly reproducible, and the procedure is straightforward and speedy. The FRAP assay offers a putative index of antioxidant, or reducing, potential of biological fluids within the technological reach of every laboratory and researcher interested in oxidative stress and its effects.
            • Record: found
            • Abstract: found
            • Article: not found

            Polyphenols: food sources and bioavailability.

            Polyphenols are abundant micronutrients in our diet, and evidence for their role in the prevention of degenerative diseases such as cancer and cardiovascular diseases is emerging. The health effects of polyphenols depend on the amount consumed and on their bioavailability. In this article, the nature and contents of the various polyphenols present in food sources and the influence of agricultural practices and industrial processes are reviewed. Estimates of dietary intakes are given for each class of polyphenols. The bioavailability of polyphenols is also reviewed, with particular focus on intestinal absorption and the influence of chemical structure (eg, glycosylation, esterification, and polymerization), food matrix, and excretion back into the intestinal lumen. Information on the role of microflora in the catabolism of polyphenols and the production of some active metabolites is presented. Mechanisms of intestinal and hepatic conjugation (methylation, glucuronidation, sulfation), plasma transport, and elimination in bile and urine are also described. Pharmacokinetic data for the various polyphenols are compared. Studies on the identification of circulating metabolites, cellular uptake, intracellular metabolism with possible deconjugation, biological properties of the conjugated metabolites, and specific accumulation in some target tissues are discussed. Finally, bioavailability appears to differ greatly between the various polyphenols, and the most abundant polyphenols in our diet are not necessarily those that have the best bioavailability profile. A thorough knowledge of the bioavailability of the hundreds of dietary polyphenols will help us to identify those that are most likely to exert protective health effects.
              • Record: found
              • Abstract: found
              • Article: not found

              Plant polyphenols as dietary antioxidants in human health and disease

              Polyphenols are secondary metabolites of plants and are generally involved in defense against ultraviolet radiation or aggression by pathogens. In the last decade, there has been much interest in the potential health benefits of dietary plant polyphenols as antioxidant. Epidemiological studies and associated meta-analyses strongly suggest that long term consumption of diets rich in plant polyphenols offer protection against development of cancers, cardiovascular diseases, diabetes, osteoporosis and neurodegenerative diseases. Here we present knowledge about the biological effects of plant polyphenols in the context of relevance to human health.

                Author and article information

                PeerJ Inc. (San Diego, USA )
                24 February 2023
                : 11
                : e14916
                [1 ]Institute of Agri-Foodstuff Commodity/Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology , Bydgoszcz, Poland
                [2 ]Department of Biology and Plant Protection/Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology , Bydgoszcz, Poland
                [3 ]Department of Biogeochemistry and Soil Science/Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology , Bydgoszcz, Poland
                [4 ]Department of Agronomy/Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology , Bydgoszcz, Poland
                ©2023 Pobereżny et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                : 8 September 2022
                : 26 January 2023
                Funded by: European Union funds under the Cooperation of the Rural Development Programme for 2014-2020 (63.63%)
                Funded by: National Public Funds (36.37%)
                Funded by: Minister of Agriculture and Rural Development
                Funded by: European Agricultural Fund for Rural Development: Europe investing in rural areas
                The publication was financed from the European Union funds under the Cooperation of the Rural Development Programme for 2014-2020 (63.63%) and National Public Funds (36.37%). The Managing Authority of the Rural Development Programme for 2014-2020 the Minister of Agriculture and Rural Development and the European Agricultural Fund for Rural Development: Europe investing in rural areas. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Agricultural Science
                Plant Science
                Soil Science

                catalase,dehydrogenases,peroxidase,phenolic compounds,frap,pest,triticum sphaerococcum,triticum persicum


                Comment on this article