36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Animal‐cell culture media: History, characteristics, and current issues

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cell culture technology has spread prolifically within a century, a variety of culture media has been designed. This review goes through the history, characteristics and current issues of animal‐cell culture media.

          Methods

          A literature search was performed on PubMed and Google Scholar between 1880 and May 2016 using appropriate keywords.

          Results

          At the dawn of cell culture technology, the major components of media were naturally derived products such as serum. The field then gradually shifted to the use of chemical‐based synthetic media because naturally derived ingredients have their disadvantages such as large batch‐to‐batch variation. Today, industrially important cells can be cultured in synthetic media. Nevertheless, the combinations and concentrations of the components in these media remain to be optimized. In addition, serum‐containing media are still in general use in the field of basic research. In the fields of assisted reproductive technologies and regenerative medicine, some of the medium components are naturally derived in nearly all instances.

          Conclusions

          Further improvements of culture media are desirable, which will certainly contribute to a reduction in the experimental variation, enhance productivity among biopharmaceuticals, improve treatment outcomes of assisted reproductive technologies, and facilitate implementation and popularization of regenerative medicine.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination.

          We have systematically optimized the concentrations of 20 components of a previously published serum-free medium (Brewer and Cotman, Brain Res 494: 65-74, 1989) for survival of rat embryonic hippocampal neurons after 4 days in culture. This serum-free medium supplement, B27, produced neuron survival above 60%, independent of plating density above 160 plated cells/mm2. For isolated cells (< 100 cells/mm2), survival at 4 days was still above 45%, but could be rescued to the 60% level at 40 cells/mm2 by simply applying a coverslip on top of the cells. This suggests a need for additional trophic factors. High survival was achieved with osmolarity lower than found in Dulbecco's Modified Eagle's Medium (DMEM), and by reducing cysteine and glutamine concentrations and by the elimination of toxic ferrous sulphate found in DME/F12. Neurobasal is a new medium that incorporates these modifications to DMEM. In B27/Neurobasal, glial growth is reduced to less than 0.5% of the nearly pure neuronal population, as judged by immunocytochemistry for glial fibrillary acidic protein and neuron-specific enolase. Excellent long-term viability is achieved after 4 weeks in culture with greater than 90% viability for cells plated at 640/mm2 and greater than 50% viability for cells plated at 160/mm2. Since the medium also supports the growth of neurons from embryonic rat striatum, substantia nigra, septum, and cortex, and neonatal dentate gyrus and cerebellum (Brewer, in preparation), support for other neuron types is likely. B27/Neurobasal should be useful for in vitro studies of neuronal toxicology, pharmacology, electrophysiology, gene expression, development, and effects of growth factors and hormones.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Derivation of human embryonic stem cells in defined conditions.

            We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture.

              Embryonic stem (ES) cell lines derived from human blastocysts have the developmental potential to form derivatives of all three embryonic germ layers even after prolonged culture. Here we describe the clonal derivation of two human ES cell lines, H9.1 and H9.2. At the time of the clonal derivation of the H9.1 and H9.2 ES cell lines, the parental ES cell line, H9, had already been continuously cultured for 6 months. After an additional 8 months of culture, H9.1 and H9.2 ES cell lines continued to: (1) actively proliferate, (2) express high levels of telomerase, and (3) retain normal karyotypes. Telomere lengths, while somewhat variable, were maintained between 8 and 12 kb in high-passage H9.1 and H9.2 cells. High-passage H9.1 and H9.2 cells both formed teratomas in SCID-beige mice that included differentiated derivatives of all three embryonic germ layers. These results demonstrate the pluripotency of single human ES cells, the maintenance of pluripotency during an extended period of culture, and the long-term self-renewing properties of cultured human ES cells. The remarkable developmental potential, proliferative capacity, and karyotypic stability of human ES cells distinguish them from adult cells. Copyright 2000 Academic Press.
                Bookmark

                Author and article information

                Contributors
                tat-yao@fuso-pharm.co.jp
                Journal
                Reprod Med Biol
                Reprod. Med. Biol
                10.1111/(ISSN)1447-0578
                RMB2
                Reproductive Medicine and Biology
                John Wiley and Sons Inc. (Hoboken )
                1445-5781
                1447-0578
                21 March 2017
                April 2017
                : 16
                : 2 ( doiID: 10.1111/rmb2.2017.16.issue-2 )
                : 99-117
                Affiliations
                [ 1 ] Research and Development Center Fuso Pharmaceutical Industries, Ltd. Osaka Japan
                [ 2 ] Faculty of Biology‐Oriented Science and Technology Kindai University Wakayama Japan
                Author notes
                [*] [* ] Correspondence

                Tatsuma Yao, Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka, Japan.

                Email: tat-yao@ 123456fuso-pharm.co.jp

                Article
                RMB212024
                10.1002/rmb2.12024
                5661806
                29259457
                530a7fe3-a79b-40c0-96fa-2adda643feee
                © 2017 The Authors. Reproductive Medicine and Biology published by John Wiley & Sons Australia, Ltd on behalf of Japan Society for Reproductive Medicine.

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                Page count
                Figures: 3, Tables: 5, Pages: 19, Words: 15822
                Categories
                Review Article
                Review Articles
                Custom metadata
                2.0
                rmb212024
                April 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.7 mode:remove_FC converted:04.12.2017

                cell culture technique,cell proliferation,culture media,cultured cells,serum

                Comments

                Comment on this article