23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of Kisspeptin-10 on mesenchymal stem cells migration in vitro and in vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Kisspeptins (kp) activate a receptor coupled to a Gαq subunit (GPR54 or KiSS-1R) receptor to perform a variety of functions, including inhibition of cell motility, chemotaxis, and metastasis. In this study we have investigated whether kp-10, the most potent member of the kisspeptin family, can modulate CXCR4 (C-X-C chemokine receptor type 4) expression and mesenchymal stem cells (MSCs) migration that may influence the development of tumors.

          Materials and Methods:

          We compared the directional migration of MSCs treated with 10-100 or 500 nM kp-10 for 24 hours and no treated cells using an in vitro transmembrane migration assay. In addition, Chloromethylbenzamido Dialkylacarbocyanine (CM-Dil) labeled adipose-derived mesenchymal stem cells treated with 10-100 or 500 nM kp-10 and no treated cells were transfused via the tail vein to the melanoma tumor bearing C57BL/6 mice. After 24 hours, the mice were scarified, the tumors were dissected, and the tumor cell suspensions were analyzed by flow cytometry for detection of CM-Dil + MSCs.

          Results:

          We have found that kp-10 increased the MSCs migration at 100 nM, while it decreased the MSCs migration at 500 nM, both in vitro and in vivo, with a significant increase of CXCR4 expression at 100 nM kp-10 compared to the no treated cells, but it had no significant difference between the various concentrations of kp-10.

          Conclusion:

          Thus, our data showed that kp-10 can differently affect MSCs migration in various concentrations, probably through different effects on CXCR4 expression in various concentrations.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment.

          Signals from the microenvironment have a profound influence on the maintenance and/or progression of hematopoietic and epithelial cancers. Mesenchymal or marrow-derived stromal cells, which constitute a large proportion of the non-neoplastic cells within the tumor microenvironment, constitutively secrete the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12). CXCL12 secretion by stromal cells attracts cancer cells, acting through its cognate receptor, CXCR4, which is expressed by both hematopoietic and nonhematopoietic tumor cells. CXCR4 promotes tumor progression by direct and indirect mechanisms. First, CXCR4 is essential for metastatic spread to organs where CXCL12 is expressed, and thereby allows tumor cells to access cellular niches, such as the marrow, that favor tumor-cell survival and growth. Second, stromal-derived CXCL12 itself can stimulate survival and growth of neoplastic cells in a paracrine fashion. Third, CXCL12 can promote tumor angiogenesis by attracting endothelial cells to the tumor microenvironment. CXCR4 expression is a prognostic marker in various types of cancer, such as acute myelogenous leukemia or breast carcinoma. Promising results in preclinical tumor models indicate that CXCR4 antagonists may have antitumor activity in patients with various malignancies. Collectively, these observations reveal that CXCR4 is an important molecule involved in the spread and progression of a variety of different tumors. As such, CXCR4 antagonists, although initially developed for treatment of AIDS, actually may become effective agents for the treatment of neoplastic disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis.

            Recent reports indicated that vascular remodeling and angiogenesis are promoted by conditioned medium from the cells referred to as multipotent stromal cells (MSCs). However, the molecular events triggered by MSC-conditioned medium (CdM) were not defined. We examined the effects of CdM from human MSCs on cultures of primary human aortic endothelial cells (HAECs). The CdM inhibited hypoxia-induced apoptosis and cell death of HAECs. It also promoted tube formation by HAECs in an assay in vitro. Conditioned medium from multipotent stromal cells incubated under hypoxic conditions in serum-free endothelial basal medium for 2 days (CdM(Hyp)) from hypoxic culture of MSCs was more effective than conditioned medium from MSCs incubated under normoxic conditions in serum-free endothelial basal medium for 2 days from normoxic cultures of MSCs, an observation in part explained by its higher content of antiapoptotic and angiogenic factors, such as interleukin (IL)-6, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein (MCP)-1. The effects of CdM(Hyp) on hypoxic HAECs were partially duplicated by the addition of IL-6 in a dose-dependent manner; however, anti-IL-6, anti-MCP-1, and anti-VEGF blocking antibodies added independently did not attenuate the effects. Also, addition of CdM(Hyp) activated the PI3K-Akt pathway; the levels of p-Akt and several of its downstream targets were increased by CdM(Hyp), and both the increase in p-Akt and the increase in angiogenesis were blocked by an inhibitor of PI3K-Akt or by expression of a dominant negative gene for PI3K. CdM(Hyp) also increased the levels of p-extracellular signal-regulated kinase (ERK), but there was a minimal effect on p-signal transducer and activator of transcription-3, and an inhibitor of the ERK1/2 pathway had no effect on hypoxia-induced apoptosis of the HAECs. The results are consistent with suggestions that administration of MSCs or factors secreted by MSCs may provide a therapeutic method of decreasing apoptosis and enhancing angiogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion.

              Chemokines, small pro-inflammatory chemoattractant cytokines, that bind to specific G-protein-coupled seven-span transmembrane receptors present on plasma membranes of target cells are the major regulators of cell trafficking. In addition some chemokines have been reported to modulate cell survival and growth. Moreover, compelling evidence is accumulating that cancer cells may employ several mechanisms involving chemokine-chemokine receptor axes during their metastasis that also regulate the trafficking of normal cells. Of all the chemokines, stromal-derived factor-1 (SDF-1), an alpha-chemokine that binds to G-protein-coupled CXCR4, plays an important and unique role in the regulation of stem/progenitor cell trafficking. First, SDF-1 regulates the trafficking of CXCR4+ haemato/lymphopoietic cells, their homing/retention in major haemato/lymphopoietic organs and accumulation of CXCR4+ immune cells in tissues affected by inflammation. Second, CXCR4 plays an essential role in the trafficking of other tissue/organ specific stem/progenitor cells expressing CXCR4 on their surface, e.g., during embryo/organogenesis and tissue/organ regeneration. Third, since CXCR4 is expressed on several tumour cells, these CXCR4 positive tumour cells may metastasize to the organs that secrete/express SDF-1 (e.g., bones, lymph nodes, lung and liver). SDF-1 exerts pleiotropic effects regulating processes essential to tumour metastasis such as locomotion of malignant cells, their chemoattraction and adhesion, as well as plays an important role in tumour vascularization. This implies that new therapeutic strategies aimed at blocking the SDF-1-CXCR4 axis could have important applications in the clinic by modulating the trafficking of haemato/lymphopoietic cells and inhibiting the metastatic behaviour of tumour cells as well. In this review, we focus on a role of the SDF-1-CXCR4 axis in regulating the metastatic behaviour of tumour cells and discuss the molecular mechanisms that are essential to this process.
                Bookmark

                Author and article information

                Journal
                Adv Biomed Res
                Adv Biomed Res
                ABR
                Advanced Biomedical Research
                Medknow Publications & Media Pvt Ltd (India )
                2277-9175
                2015
                30 January 2015
                : 4
                : 20
                Affiliations
                [1 ]Student's Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
                [2 ]Physiology Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
                Author notes
                Address for correspondence: Dr. Shaghayegh Haghjooy Javanmard, Department of Physiology, Physiology Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, Iran. E-mail: sh_haghjoo@ 123456med.mui.ac.ir
                Article
                ABR-4-20
                10.4103/2277-9175.149851
                4333426
                531624d0-087a-41e4-abf4-0e7c5d6a5a9e
                Copyright: © 2015 Golzar.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 September 2013
                : 14 December 2013
                Categories
                Original Article

                Molecular medicine
                kisspeptin-10,mesenchymal stem cell,cxcr4,migration
                Molecular medicine
                kisspeptin-10, mesenchymal stem cell, cxcr4, migration

                Comments

                Comment on this article