12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bioprocess development for muconic acid production from aromatic compounds and lignin

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This work shows parallel strain and bioreactor process development to improve muconic acid production from aromatic compounds and lignin.

          Abstract

          Muconic acid (MA) is a bio-based platform chemical that can be converted into the commodity petrochemical building blocks adipic acid or terephthalic acid, or used in emerging, performance-advantaged materials. MA is a metabolic intermediate in the β-ketoadipate pathway, and can be produced from carbohydrates or other traditional carbon sources via the shikimate pathway. MA can also be produced from lignin-derived aromatic compounds with high atom efficiency through aromatic-catabolic pathways. Metabolic engineering efforts to date have developed efficient muconic acid-producing strains of the aromatic-catabolic microbe Pseudomonas putida KT2440, but the titers, productivities, and yields from aromatic compounds in most cases remain below the thresholds needed for industrially-relevant bioreactor cultivations. To that end, this work presents further process and host development towards improving MA titers, yields, and productivities, using the hydroxycinnamic acids, p-coumaric acid and ferulic acid, as model aromatic compounds. Coupling strain engineering and bioprocess development enabled the discovery of new bottlenecks in P. putida that hinder MA production from these compounds. A combination of gene overexpression and removal of a global catabolic regulator resulted in high-yielding strains (100% molar yield). Maximum MA titers of 50 g L −1, which is near the lethal toxicity limit in this bacterium, and productivities over 0.5 g L −1 h −1 were achieved in separate process configurations. Additionally, a high-pH feeding strategy, which could potentially reduce the salt load and enable higher titers by decreasing product dilution, was tested with model compounds and lignin-rich streams from corn stover and a complete conversion of the primary monomeric aromatic compounds to MA was demonstrated, obtaining a titer of 4 g L −1. Overall, this study presents a step forward for the production of value-added chemicals from lignin and highlights critical needs for further strain improvement and bioprocess development that can be applied in the biological valorization of lignin.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Lignin valorization through integrated biological funneling and chemical catalysis.

          Lignin is an energy-dense, heterogeneous polymer comprised of phenylpropanoid monomers used by plants for structure, water transport, and defense, and it is the second most abundant biopolymer on Earth after cellulose. In production of fuels and chemicals from biomass, lignin is typically underused as a feedstock and burned for process heat because its inherent heterogeneity and recalcitrance make it difficult to selectively valorize. In nature, however, some organisms have evolved metabolic pathways that enable the utilization of lignin-derived aromatic molecules as carbon sources. Aromatic catabolism typically occurs via upper pathways that act as a "biological funnel" to convert heterogeneous substrates to central intermediates, such as protocatechuate or catechol. These intermediates undergo ring cleavage and are further converted via the β-ketoadipate pathway to central carbon metabolism. Here, we use a natural aromatic-catabolizing organism, Pseudomonas putida KT2440, to demonstrate that these aromatic metabolic pathways can be used to convert both aromatic model compounds and heterogeneous, lignin-enriched streams derived from pilot-scale biomass pretreatment into medium chain-length polyhydroxyalkanoates (mcl-PHAs). mcl-PHAs were then isolated from the cells and demonstrated to be similar in physicochemical properties to conventional carbohydrate-derived mcl-PHAs, which have applications as bioplastics. In a further demonstration of their utility, mcl-PHAs were catalytically converted to both chemical precursors and fuel-range hydrocarbons. Overall, this work demonstrates that the use of aromatic catabolic pathways enables an approach to valorize lignin by overcoming its inherent heterogeneity to produce fuels, chemicals, and materials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lignin depolymerisation strategies: towards valuable chemicals and fuels.

            Research on lignin deconstruction has recently become the center of interest for scientists and companies worldwide, racing towards harvesting fossil-fuel like aromatic compounds which are so durably put together by plants as products of millions of years of evolution. The natural complexity and high stability of lignin bonds (also as an evolutionary adaptation by plants) makes lignin depolymerization a highly challenging task. Several efforts have been directed towards a more profound understanding of the structure and composition of lignin in order to devise pathways to break down the biopolymer into useful compounds. The present contribution aims to provide an overview of key advances in the field of lignin depolymerisation. Protocols and technologies will be discussed as well as critically evaluated in terms of possibilities and potential for further industrial implementation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Opportunities and challenges in biological lignin valorization.

              Lignin is a primary component of lignocellulosic biomass that is an underutilized feedstock in the growing biofuels industry. Despite the fact that lignin depolymerization has long been studied, the intrinsic heterogeneity of lignin typically leads to heterogeneous streams of aromatic compounds, which in turn present significant technical challenges when attempting to produce lignin-derived chemicals where purity is often a concern. In Nature, microorganisms often encounter this same problem during biomass turnover wherein powerful oxidative enzymes produce heterogeneous slates of aromatics compounds. Some microbes have evolved metabolic pathways to convert these aromatic species via 'upper pathways' into central intermediates, which can then be funneled through 'lower pathways' into central carbon metabolism in a process we dubbed 'biological funneling'. This funneling approach offers a direct, biological solution to overcome heterogeneity problems in lignin valorization for the modern biorefinery. Coupled to targeted separations and downstream chemical catalysis, this concept offers the ability to produce a wide range of molecules from lignin. This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks. In particular, we discuss tailoring the lignin substrate for microbial utilization, host selection for biological funneling, ligninolytic enzyme-microbe synergy, metabolic engineering, expanding substrate specificity for biological funneling, and process integration, each of which presents key challenges. Ultimately, for biological solutions to lignin valorization to be viable, multiple questions in each of these areas will need to be addressed, making biological lignin valorization a multidisciplinary, co-design problem.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                October 29 2018
                2018
                : 20
                : 21
                : 5007-5019
                Affiliations
                [1 ]National Bioenergy Center
                [2 ]National Renewable Energy Laboratory
                [3 ]Golden
                [4 ]USA
                Article
                10.1039/C8GC02519C
                531829fd-5a8a-4d6c-8168-05067551dda5
                © 2018

                Free to read

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article