14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Novel interactions between mitochondrial superoxide dismutases and the electron transport chain.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The processes that control aging remain poorly understood. We have exploited mutants in the nematode, Caenorhabditis elegans, that compromise mitochondrial function and scavenging of reactive oxygen species (ROS) to understand their relation to lifespan. We discovered unanticipated roles and interactions of the mitochondrial superoxide dismutases (mtSODs): SOD-2 and SOD-3. Both SODs localize to mitochondrial supercomplex I:III:IV. Loss of SOD-2 specifically (i) decreases the activities of complexes I and II, complexes III and IV remain normal; (ii) increases the lifespan of animals with a complex I defect, but not the lifespan of animals with a complex II defect, and kills an animal with a complex III defect; (iii) induces a presumed pro-inflammatory response. Knockdown of a molecule that may be a pro-inflammatory mediator very markedly extends lifespan and health of certain mitochondrial mutants. The relationship between the electron transport chain, ROS, and lifespan is complex, and defects in mitochondrial function have specific interactions with ROS scavenging mechanisms. We conclude that mtSODs are embedded within the supercomplex I:III:IV and stabilize or locally protect it from reactive oxygen species (ROS) damage. The results call for a change in the usual paradigm for the interaction of electron transport chain function, ROS release, scavenging, and compensatory responses.

          Related collections

          Author and article information

          Journal
          Aging Cell
          Aging cell
          1474-9726
          1474-9718
          Dec 2013
          : 12
          : 6
          Affiliations
          [1 ] Department of Anesthesiology and Pain Medicine, Center for Developmental Therapeutics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.
          Article
          NIHMS512071
          10.1111/acel.12144
          23895727
          5341c5fd-87e3-4eaf-bf77-ead7d44aed45
          © 2013 the Anatomical Society and John Wiley & Sons Ltd.
          History

          electron transport chain,heat shock protein,lifespan,reactive oxygen species,supercomplexes,superoxide dismutase

          Comments

          Comment on this article