6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Anaerobic bacteria cultured from cystic fibrosis airways correlate to milder disease: a multisite study

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anaerobic and aerobic bacteria were quantitated in respiratory samples across three cystic fibrosis (CF) centres using extended culture methods. Subjects aged 1–69 years who were clinically stable provided sputum (n=200) or bronchoalveolar lavage (n=55). 18 anaerobic and 39 aerobic genera were cultured from 59% and 95% of samples, respectively; 16 out of 57 genera had a ≥5% prevalence across centres.

          Analyses of microbial communities using co-occurrence networks in sputum samples showed groupings of oral, including anaerobic, bacteria, whereas typical CF pathogens formed distinct entities. Pseudomonas was associated with worse nutrition and F508del genotype, whereas anaerobe prevalence was positively associated with pancreatic sufficiency, better nutrition and better lung function. A higher total anaerobe/total aerobe CFU ratio was associated with pancreatic sufficiency and better nutrition. Subjects grouped by factor analysis who had relative dominance of anaerobes over aerobes had milder disease compared with a Pseudomonas-dominated group with similar proportions of subjects that were homozygous for F508del.

          In summary, anaerobic bacteria occurred at an early age. In sputum-producing subjects anaerobic bacteria were associated with milder disease, suggesting that targeted eradication of anaerobes may not be warranted in sputum-producing CF subjects.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals

          ABSTRACT No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies.

            Bacteria have evolved the ability to form multicellular, surface-adherent communities called biofilms that allow survival in hostile environments. In clinical settings, bacteria are exposed to various sources of stress, including antibiotics, nutrient limitation, anaerobiosis, heat shock, etc., which in turn trigger adaptive responses in bacterial cells. The combination of this and other defense mechanisms results in the formation of highly (adaptively) resistant multicellular structures that are recalcitrant to host immune clearance mechanisms and very difficult to eradicate with the currently available antimicrobial agents, which are generally developed for the eradication of free-swimming (planktonic) bacteria. However, novel strategies that specifically target the biofilm mode of growth have been recently described, thus providing the basis for future anti-biofilm therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              rrndb: the Ribosomal RNA Operon Copy Number Database.

              The Ribosomal RNA Operon Copy Number Database (rrndb) is an Internet-accessible database containing annotated information on rRNA operon copy number among prokaryotes. Gene redundancy is uncommon in prokaryotic genomes, yet the rRNA genes can vary from one to as many as 15 copies. Despite the widespread use of 16S rRNA gene sequences for identification of prokaryotes, information on the number and sequence of individual rRNA genes in a genome is not readily accessible. In an attempt to understand the evolutionary implications of rRNA operon redundancy, we have created a phylogenetically arranged report on rRNA gene copy number for a diverse collection of prokaryotic microorganisms. Each entry (organism) in the rrndb contains detailed information linked directly to external websites including the Ribosomal Database Project, GenBank, PubMed and several culture collections. Data contained in the rrndb will be valuable to researchers investigating microbial ecology and evolution using 16S rRNA gene sequences. The rrndb web site is directly accessible on the WWW at http://rrndb.cme. msu.edu.
                Bookmark

                Author and article information

                Journal
                European Respiratory Journal
                Eur Respir J
                European Respiratory Society (ERS)
                0903-1936
                1399-3003
                July 27 2018
                July 2018
                July 2018
                June 25 2018
                : 52
                : 1
                : 1800242
                Article
                10.1183/13993003.00242-2018
                6376871
                29946004
                5350d336-ccaa-422d-916d-1cee2847e5fd
                © 2018
                History

                Comments

                Comment on this article