3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Persistent dyslipidemia in treatment of lysosomal acid lipase deficiency

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lysosomal acid lipase deficiency (LALD) is an autosomal recessive inborn error of lipid metabolism characterized by impaired lysosomal hydrolysis and consequent accumulation of cholesteryl esters and triglycerides. The phenotypic spectrum is diverse, ranging from severe, neonatal onset failure to thrive, hepatomegaly, hepatic fibrosis, malabsorption and adrenal insufficiency to childhood-onset hyperlipidemia, hepatomegaly, and hepatic fibrosis. Sebelipase alfa enzyme replacement has been approved by the Food and Drug Administration for use in LALD after demonstrating dramatic improvement in transaminitis and dyslipidemia with initiation of enzyme replacement therapy.

          Methods

          A chart review was performed on 2 patients with childhood-onset, symptomatic LALD with persistent dyslipidemia despite appropriate enzyme replacement therapy to identify biological pathways and risk factors for incomplete response to therapy.

          Results

          Two patients with attenuated, symptomatic LALD had resolution of transaminitis on enzyme replacement therapy without concomitant effect on dyslipidemia despite dose escalation and no evidence of antibody response to enzyme.

          Conclusion

          Enzyme replacement therapy does not universally resolve all complications of LALD. Persistent dyslipidemia remains a clinically significant issue, likely related to the complex metabolic pathways implicated in LALD pathogenesis. We discuss the possible mechanistic basis for this unexpected finding and the implications for curative LALD therapy.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease.

          Cholesteryl ester storage disease (CESD) is caused by deficient lysosomal acid lipase (LAL) activity, predominantly resulting in cholesteryl ester (CE) accumulation, particularly in the liver, spleen, and macrophages throughout the body. The disease is characterized by microvesicular steatosis leading to liver failure, accelerated atherosclerosis and premature demise. Although CESD is rare, it is likely that many patients are unrecognized or misdiagnosed. Here, the findings in 135 CESD patients described in the literature are reviewed. Diagnoses were based on liver biopsies, LAL deficiency and/or LAL gene (LIPA) mutations. Hepatomegaly was present in 99.3% of patients; 74% also had splenomegaly. When reported, most patients had elevated serum total cholesterol, LDL-cholesterol, triglycerides, and transaminases (AST, ALT, or both), while HDL-cholesterol was decreased. All 112 liver biopsied patients had the characteristic pathology, which is progressive, and includes microvesicular steatosis, which leads to fibrosis, micronodular cirrhosis, and ultimately to liver failure. Pathognomonic birefringent CE crystals or their remnant clefts were observed in hepatic cells. Extrahepatic manifestations included portal hypertension, esophageal varices, and accelerated atherosclerosis. Liver failure in 17 reported patients resulted in liver transplantation and/or death. Genotyping identified 31 LIPA mutations in 55 patients; 61% of mutations were the common exon 8 splice-junction mutation (E8SJM(-1G>A)), for which 18 patients were homozygous. Genotype/phenotype correlations were limited; however, E8SJM(-1G>A) homozygotes typically had early-onset, slowly progressive disease. Supportive treatment included cholestyramine, statins, and, ultimately, liver transplantation. Recombinant LAL replacement was shown to be effective in animal models, and recently, a phase I/II clinical trial demonstrated its safety and indicated its potential metabolic efficacy. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Phase 3 Trial of Sebelipase Alfa in Lysosomal Acid Lipase Deficiency.

            Lysosomal acid lipase is an essential lipid-metabolizing enzyme that breaks down endocytosed lipid particles and regulates lipid metabolism. We conducted a phase 3 trial of enzyme-replacement therapy in children and adults with lysosomal acid lipase deficiency, an underappreciated cause of cirrhosis and severe dyslipidemia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genetic determinants of inherited susceptibility to hypercholesterolemia – a comprehensive literature review

              Hypercholesterolemia is a strong determinant of mortality and morbidity associated with cardiovascular diseases and a major contributor to the global disease burden. Mutations in four genes (LDLR, APOB, PCSK9 and LDLRAP1) account for the majority of cases with familial hypercholesterolemia. However, a substantial proportion of adults with hypercholesterolemia do not have a mutation in any of these four genes. This indicates the probability of having other genes with a causative or contributory role in the pathogenesis of hypercholesterolemia and suggests a polygenic inheritance of this condition. Here in, we review the recent evidence of association of the genetic variants with hypercholesterolemia and the three lipid traits; total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C), their biological pathways and the associated pathogenetic mechanisms. Nearly 80 genes involved in lipid metabolism (encoding structural components of lipoproteins, lipoprotein receptors and related proteins, enzymes, lipid transporters, lipid transfer proteins, and activators or inhibitors of protein function and gene transcription) with single nucleotide variants (SNVs) that are recognized to be associated with hypercholesterolemia and serum lipid traits in genome-wide association studies and candidate gene studies were identified. In addition, genome-wide association studies in different populations have identified SNVs associated with TC, HDL-C and LDL-C in nearly 120 genes within or in the vicinity of the genes that are not known to be involved in lipid metabolism. Over 90% of the SNVs in both these groups are located outside the coding regions of the genes. These findings indicates that there might be a considerable number of unrecognized processes and mechanisms of lipid homeostasis, which when disrupted, would lead to hypercholesterolemia. Knowledge of these molecular pathways will enable the discovery of novel treatment and preventive methods as well as identify the biochemical and molecular markers for the risk prediction and early detection of this common, yet potentially debilitating condition. Electronic supplementary material The online version of this article (doi:10.1186/s12944-017-0488-4) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                ficicioglu@email.chop.edu
                Journal
                Orphanet J Rare Dis
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central (London )
                1750-1172
                24 February 2020
                24 February 2020
                2020
                : 15
                : 58
                Affiliations
                [1 ]ISNI 0000 0001 0680 8770, GRID grid.239552.a, Division of Human Genetics and Metabolism, , Children’s Hospital of Philadelphia, ; 3401 Civic Center Blvd, Philadelphia, PA 19104 USA
                [2 ]ISNI 0000 0000 9081 2336, GRID grid.412590.b, Present address: C.S. Mott Children’s Hospital, Michigan Medicine, ; 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
                Author information
                http://orcid.org/0000-0002-8331-9804
                Article
                1328
                10.1186/s13023-020-1328-6
                7041253
                32093730
                536cd8b0-ec4c-4017-af62-7ff35587f37f
                © The Author(s). 2020

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 January 2020
                : 7 February 2020
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Infectious disease & Microbiology
                lysosomal acid lipase deficiency,sebelipase alfa,hypercholesterolemia,enzyme replacement therapy

                Comments

                Comment on this article