35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A note on the large-angle anisotropies in the WMAP cut-sky maps

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent analyses of the WMAP data seem to indicate the possible presence of large-angle anisotropy in the Universe. If confirmed, these can have important consequences for our understanding of the Universe. A number of attempts have recently been made to establish the reality and nature of such anisotropies in the CMB data. Among these is a directional indicator recently proposed by the authors. A distinctive feature of this indicator is that it can be used to generate a sky map of the large-scale anisotropies of the CMB maps. Applying this indicator to full-sky temperature maps we found a statistically significant preferred direction. The full-sky maps used in these analyses are known to have residual foreground contamination as well as complicated noise properties. Thus, here we performed the same analysis for a map where regions with high foreground contamination were removed. We find that the main feature of the full-sky analysis, namely the presence of a significant axis of asymmetry, is robust with respect to this masking procedure. Other subtler anomalies of the full-sky are on the other hand no longer present.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Is the low-l microwave background cosmic?

          The large-angle (low-l) correlations of the Cosmic Microwave Background exhibit several statistically significant anomalies compared to the standard inflationary big-bang model, however no connection has hitherto been drawn between them. Here we show that the quadrupole and octopole are far more correlated (99.97% C.L.) than previously thought. The quadrupole plane and the three octopole planes are remarkably aligned. Three of these planes are orthogonal to the ecliptic at a level inconsistent with gaussian random statistically isotropic skies at 99.8% C.L., and the normals to these planes are aligned at 99.9% C.L. with the direction of the cosmological dipole and with the equinoxes. The remaining octopole plane is orthogonal to the supergalactic plane at >99.9% C.L. In a combined quadrupole-octopole map, the ecliptic plane narrowly threads between a hot spot and a cold spot over approximately 1/3 of the sky, and separates the three strongest extrema (in the south ecliptic hemisphere) from the three weakest extrema (in the north ecliptic hemisphere).
            Bookmark

            Author and article information

            Journal
            04 June 2007
            Article
            10.1142/S0218271807010195
            0706.0575
            5381225a-9567-47e7-8253-232171751e0a
            History
            Custom metadata
            Int.J.Mod.Phys.D16:411-420,2007
            10 pages, 3 figeres. We performed a similar analysis of arXiv:astro-ph/0511666 by considering the LILC map with a Kp2 sky cut, and find that the presence of a significant axis of asymmetry is robust with respect to this masking procedure
            astro-ph gr-qc hep-th

            Comments

            Comment on this article