14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced detection and comprehensive in situ phenotypic characterization of circulating and disseminated heteroploid epithelial and glioma tumor cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conventional strategy of anti-EpCAM capture and immunostaining of cytokeratins (CKs) to detect circulating tumor cells (CTCs) is limited by highly heterogeneous and dynamic expression or absence of EpCAM and/or CKs in CTCs. In this study, a novel integrated cellular and molecular approach of subtraction enrichment (SE) and immunostaining-FISH (iFISH) was successfully developed. Both large or small size CTCs and circulating tumor microemboli (CTM) in various biofluid samples including cerebrospinal fluid (CSF) of cancer patients and patient-derived-xenograft (PDX) mouse models were efficiently enriched and comprehensively identified and characterized by SE-iFISH. Non-hematopoietic CTCs with heteroploid chromosome 8 were detected in 87–92% of lung, esophageal and gastric cancer patients. Characterization of CTCs performed by CK18-iFISH showed that CK18, the dual epithelial marker and tumor biomarker, was strong positive in only 14% of lung and 24% of esophageal CTCs, respectively. Unlike conventional methodologies restricted only to the large and/or both EpCAM and CK positive CTCs, SE-iFISH enables efficient enrichment and performing in situ phenotypic and karyotypic identification and characterization of the highly heterogeneous CTC subtypes classified by both chromosome ploidy and the expression of various tumor biomarkers. Each CTC subtype may possess distinct clinical significance relative to tumor metastasis, relapse, therapeutic drug sensitivity or resistance, etc.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of mutations in EGFR in circulating lung-cancer cells.

          The use of tyrosine kinase inhibitors to target the epidermal growth factor receptor gene (EGFR) in patients with non-small-cell lung cancer is effective but limited by the emergence of drug-resistance mutations. Molecular characterization of circulating tumor cells may provide a strategy for noninvasive serial monitoring of tumor genotypes during treatment. We captured highly purified circulating tumor cells from the blood of patients with non-small-cell lung cancer using a microfluidic device containing microposts coated with antibodies against epithelial cells. We performed EGFR mutational analysis on DNA recovered from circulating tumor cells using allele-specific polymerase-chain-reaction amplification and compared the results with those from concurrently isolated free plasma DNA and from the original tumor-biopsy specimens. We isolated circulating tumor cells from 27 patients with metastatic non-small-cell lung cancer (median number, 74 cells per milliliter). We identified the expected EGFR activating mutation in circulating tumor cells from 11 of 12 patients (92%) and in matched free plasma DNA from 4 of 12 patients (33%) (P=0.009). We detected the T790M mutation, which confers drug resistance, in circulating tumor cells collected from patients with EGFR mutations who had received tyrosine kinase inhibitors. When T790M was detectable in pretreatment tumor-biopsy specimens, the presence of the mutation correlated with reduced progression-free survival (7.7 months vs. 16.5 months, P<0.001). Serial analysis of circulating tumor cells showed that a reduction in the number of captured cells was associated with a radiographic tumor response; an increase in the number of cells was associated with tumor progression, with the emergence of additional EGFR mutations in some cases. Molecular analysis of circulating tumor cells from the blood of patients with lung cancer offers the possibility of monitoring changes in epithelial tumor genotypes during the course of treatment. 2008 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection, clinical relevance and specific biological properties of disseminating tumour cells.

            Most cancer deaths are caused by haematogenous metastatic spread and subsequent growth of tumour cells at distant organs. Disseminating tumour cells present in the peripheral blood and bone marrow can now be detected and characterized at the single-cell level. These cells are highly relevant to the study of the biology of early metastatic spread and provide a diagnostic source in patients with overt metastases. Here we review the evidence that disseminating tumour cells have a variety of uses for understanding tumour biology and improving cancer treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA.

              The ability to study nonhematologic cancers through noninvasive sampling of blood is one of the most exciting and rapidly advancing fields in cancer diagnostics. This has been driven both by major technologic advances, including the isolation of intact cancer cells and the analysis of cancer cell-derived DNA from blood samples, and by the increasing application of molecularly driven therapeutics, which rely on such accurate and timely measurements of critical biomarkers. Moreover, the dramatic efficacy of these potent cancer therapies drives the selection for additional genetic changes as tumors acquire drug resistance, necessitating repeated sampling of cancer cells to adjust therapy in response to tumor evolution. Together, these advanced noninvasive diagnostic capabilities and their applications in guiding precision cancer therapies are poised to change the ways in which we select and monitor cancer treatments. Recent advances in technologies to analyze circulating tumor cells and circulating tumor DNA are setting the stage for real-time, noninvasive monitoring of cancer and providing novel insights into cancer evolution, invasion, and metastasis. ©2014 American Association for Cancer Research.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                29 September 2015
                29 July 2015
                : 6
                : 29
                : 27049-27064
                Affiliations
                1 Department of Thoracic Surgery, Capital Medical University School of Oncology and Chaoyang Hospital, Beijing, China
                2 Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
                3 Cytelligen, San Diego, California, USA
                Author notes
                Correspondence to: Peter Ping Lin, plin@ 123456cytelligen.com
                Article
                10.18632/oncotarget.4819
                4694973
                26267323
                53887156-d2d6-4973-916b-9fed046cc5fc
                Copyright: © 2015 Ge et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 June 2015
                : 17 July 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                ctc and dtc subtypes,ifish,subtraction enrichment,cytokeratin (ck) 18,in situ phenotyping and karyotyping

                Comments

                Comment on this article