96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Uncovering plant-pathogen crosstalk through apoplastic proteomic studies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis.

          Chitin is a major component of fungal cell walls and serves as a microbe-associated molecular pattern (MAMP) for the detection of various potential pathogens in innate immune systems of both plants and animals. We recently showed that chitin elicitor-binding protein (CEBiP), plasma membrane glycoprotein with LysM motifs, functions as a cell surface receptor for chitin elicitor in rice. The predicted structure of CEBiP does not contain any intracellular domains, suggesting that an additional component(s) is required for signaling through the plasma membrane into the cytoplasm. Here, we identified a receptor-like kinase, designated CERK1, which is essential for chitin elicitor signaling in Arabidopsis. The KO mutants for CERK1 completely lost the ability to respond to the chitin elicitor, including MAPK activation, reactive oxygen species generation, and gene expression. Disease resistance of the KO mutant against an incompatible fungus, Alternaria brassicicola, was partly impaired. Complementation with the WT CERK1 gene showed cerk1 mutations were responsible for the mutant phenotypes. CERK1 is a plasma membrane protein containing three LysM motifs in the extracellular domain and an intracellular Ser/Thr kinase domain with autophosphorylation/myelin basic protein kinase activity, suggesting that CERK1 plays a critical role in fungal MAMP perception in plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor.

            Chitin is a major component of fungal cell walls and serves as a molecular pattern for the recognition of potential pathogens in the innate immune systems of both plants and animals. In plants, chitin oligosaccharides have been known to induce various defense responses in a wide range of plant cells including both monocots and dicots. To clarify the molecular machinery involved in the perception and transduction of chitin oligosaccharide elicitor, a high-affinity binding protein for this elicitor was isolated from the plasma membrane of suspension-cultured rice cells. Characterization of the purified protein, CEBiP, as well as the cloning of the corresponding gene revealed that CEBiP is actually a glycoprotein consisting of 328 amino acid residues and glycan chains. CEBiP was predicted to have a short membrane spanning domain at the C terminus. Knockdown of CEBiP gene by RNA interference resulted in the suppression of the elicitor-induced oxidative burst as well as the gene responses, showing that CEBiP plays a key role in the perception and transduction of chitin oligosaccharide elicitor in the rice cells. Structural analysis of CEBiP also indicated the presence of two LysM motifs in the extracellular portion of CEBiP. As the LysM motif has been known to exist in the putative Nod-factor receptor kinases involved in the symbiotic signaling between leguminous plants and rhizobial bacteria, the result indicates the involvement of partially homologous plasma membrane proteins both in defense and symbiotic signaling in plant cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Current two-dimensional electrophoresis technology for proteomics.

              Two-dimensional gel electrophoresis (2-DE) with immobilized pH gradients (IPGs) combined with protein identification by mass spectrometry (MS) is currently the workhorse for proteomics. In spite of promising alternative or complementary technologies (e.g. multidimensional protein identification technology, stable isotope labelling, protein or antibody arrays) that have emerged recently, 2-DE is currently the only technique that can be routinely applied for parallel quantitative expression profiling of large sets of complex protein mixtures such as whole cell lysates. 2-DE enables the separation of complex mixtures of proteins according to isoelectric point (pI), molecular mass (Mr), solubility, and relative abundance. Furthermore, it delivers a map of intact proteins, which reflects changes in protein expression level, isoforms or post-translational modifications. This is in contrast to liquid chromatography-tandem mass spectrometry based methods, which perform analysis on peptides, where Mr and pI information is lost, and where stable isotope labelling is required for quantitative analysis. Today's 2-DE technology with IPGs (Görg et al., Electrophoresis 2000, 21, 1037-1053), has overcome the former limitations of carrier ampholyte based 2-DE (O'Farrell, J. Biol. Chem. 1975, 250, 4007-4021) with respect to reproducibility, handling, resolution, and separation of very acidic and/or basic proteins. The development of IPGs between pH 2.5-12 has enabled the analysis of very alkaline proteins and the construction of the corresponding databases. Narrow-overlapping IPGs provide increased resolution (delta pI = 0.001) and, in combination with prefractionation methods, the detection of low abundance proteins. Depending on the gel size and pH gradient used, 2-DE can resolve more than 5000 proteins simultaneously (approximately 2000 proteins routinely), and detect and quantify < 1 ng of protein per spot. In this article we describe the current 2-DE/MS workflow including the following topics: sample preparation, protein solubilization, and prefractionation; protein separation by 2-DE with IPGs; protein detection and quantitation; computer assisted analysis of 2-DE patterns; protein identification and characterization by MS; two-dimensional protein databases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                03 June 2014
                2014
                : 5
                : 249
                Affiliations
                Laboratoire Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne-EA 4707, Université de Reims Champagne-Ardenne Reims, France
                Author notes

                Edited by: Jean-Pierre Metraux, Université de Fribourg, Switzerland

                Reviewed by: Murray Grant, University of Exeter, UK; Richard Bostock, University of California, Davis, USA

                *Correspondence: Sylvain Cordelier, Laboratoire Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne-EA 4707, Université de Reims Champagne-Ardenne, Moulin de la Housse – BP 1039, 51687 Reims cedex 2, France e-mail: sylvain.cordelier@ 123456univ-reims.fr

                This article was submitted to Plant-Microbe Interaction, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2014.00249
                4042593
                24917874
                539279cb-94ec-4954-a6d7-a14193723c2e
                Copyright © 2014 Delaunois, Jeandet, Clément, Baillieul, Dorey and Cordelier.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 February 2014
                : 15 May 2014
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 148, Pages: 18, Words: 16055
                Categories
                Plant Science
                Review Article

                Plant science & Botany
                apoplast,cell wall,proteomics,secretome,pathogen,defense,mamp
                Plant science & Botany
                apoplast, cell wall, proteomics, secretome, pathogen, defense, mamp

                Comments

                Comment on this article