13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogeny-based tumor subclone identification using a Bayesian feature allocation model

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumor cells acquire different genetic alterations during the course of evolution in cancer patients. As a result of competition and selection, only a few subgroups of cells with distinct genotypes survive. These subgroups of cells are often referred to as subclones. In recent years, many statistical and computational methods have been developed to identify tumor subclones, leading to biologically significant discoveries and shedding light on tumor progression, metastasis, drug resistance and other processes. However, most existing methods are either not able to infer the phylogenetic structure among subclones, or not able to incorporate copy number variations (CNV). In this article, we propose SIFA (tumor Subclone Identification by Feature Allocation), a Bayesian model which takes into account both CNV and tumor phylogeny structure to infer tumor subclones. We compare the performance of SIFA with two other commonly used methods using simulation studies with varying sequencing depth, evolutionary tree size, and tree complexity. SIFA consistently yields better results in terms of Rand Index and cellularity estimation accuracy. The usefulness of SIFA is also demonstrated through its application to whole genome sequencing (WGS) samples from four patients in a breast cancer study.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Natural Scales in Geographical Patterns

          Human mobility is known to be distributed across several orders of magnitude of physical distances , which makes it generally difficult to endogenously find or define typical and meaningful scales. Relevant analyses, from movements to geographical partitions, seem to be relative to some ad-hoc scale, or no scale at all. Relying on geotagged data collected from photo-sharing social media, we apply community detection to movement networks constrained by increasing percentiles of the distance distribution. Using a simple parameter-free discontinuity detection algorithm, we discover clear phase transitions in the community partition space. The detection of these phases constitutes the first objective method of characterising endogenous, natural scales of human movement. Our study covers nine regions, ranging from cities to countries of various sizes and a transnational area. For all regions, the number of natural scales is remarkably low (2 or 3). Further, our results hint at scale-related behaviours rather than scale-related users. The partitions of the natural scales allow us to draw discrete multi-scale geographical boundaries, potentially capable of providing key insights in fields such as epidemiology or cultural contagion where the introduction of spatial boundaries is pivotal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Copynumber: Efficient algorithms for single- and multi-track copy number segmentation

            Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The implications of clonal genome evolution for cancer medicine.

                Bookmark

                Author and article information

                Journal
                16 March 2018
                Article
                1803.06393
                5392e654-f1e7-44cf-aea2-accfec50ad7a

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                35 pages, 11 figures
                stat.AP q-bio.TO

                Comments

                Comment on this article