3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arabidopsis thaliana PrimPol is a primase and lesion bypass DNA polymerase with the biochemical characteristics to cope with DNA damage in the nucleus, mitochondria, and chloroplast

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PrimPol is a novel Primase–Polymerase that synthesizes RNA and DNA primers de novo and extents from these primers as a DNA polymerase. Animal PrimPol is involved in nuclear and mitochondrial DNA replication by virtue of its translesion DNA synthesis (TLS) and repriming activities. Here we report that the plant model Arabidopsis thaliana encodes a functional PrimPol (AtPrimPol). AtPrimPol is a low fidelity and a TLS polymerase capable to bypass DNA lesions, like thymine glycol and abasic sites, by incorporating directly across these lesions or by skipping them. AtPrimPol is also an efficient primase that preferentially recognizes the single-stranded 3′- GTCG-5′ DNA sequence, where the 3′-G is cryptic. AtPrimPol is the first DNA polymerase that localizes in three cellular compartments: nucleus, mitochondria, and chloroplast. In vitro, AtPrimPol synthesizes primers that are extended by the plant organellar DNA polymerases and this reaction is regulated by organellar single-stranded binding proteins. Given the constant exposure of plants to endogenous and exogenous DNA-damaging agents and the enzymatic capabilities of lesion bypass and re-priming of AtPrimPol, we postulate a predominant role of this enzyme in avoiding replication fork collapse in all three plant genomes, both as a primase and as a TLS polymerase.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants.

          Genome sequencing has resulted in the identification of a large number of uncharacterized genes with unknown functions. It is widely recognized that determination of the intracellular localization of the encoded proteins may aid in identifying their functions. To facilitate these localization experiments, we have generated a series of fluorescent organelle markers based on well-established targeting sequences that can be used for co-localization studies. In particular, this organelle marker set contains indicators for the endoplasmic reticulum, the Golgi apparatus, the tonoplast, peroxisomes, mitochondria, plastids and the plasma membrane. All markers were generated with four different fluorescent proteins (FP) (green, cyan, yellow or red FPs) in two different binary plasmids for kanamycin or glufosinate selection, respectively, to allow for flexible combinations. The labeled organelles displayed characteristic morphologies consistent with previous descriptions that could be used for their positive identification. Determination of the intracellular distribution of three previously uncharacterized proteins demonstrated the usefulness of the markers in testing predicted subcellular localizations. This organelle marker set should be a valuable resource for the plant community for such co-localization studies. In addition, the Arabidopsis organelle marker lines can also be employed in plant cell biology teaching labs to demonstrate the distribution and dynamics of these organelles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of the genome sequence of the flowering plant Arabidopsis thaliana

            The flowering plant Arabidopsis thaliana is an important model system for identifying genes and determining their functions. Here we report the analysis of the genomic sequence of Arabidopsis. The sequenced regions cover 115.4 megabases of the 125-megabase genome and extend into centromeric regions. The evolution of Arabidopsis involved a whole-genome duplication, followed by subsequent gene loss and extensive local gene duplications, giving rise to a dynamic genome enriched by lateral gene transfer from a cyanobacterial-like ancestor of the plastid. The genome contains 25,498 genes encoding proteins from 11,000 families, similar to the functional diversity of Drosophila and Caenorhabditis elegans--the other sequenced multicellular eukaryotes. Arabidopsis has many families of new proteins but also lacks several common protein families, indicating that the sets of common proteins have undergone differential expansion and contraction in the three multicellular eukaryotes. This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Arabidopsis information resource: Making and mining the "gold standard" annotated reference plant genome.

              The Arabidopsis Information Resource (TAIR) is a continuously updated, online database of genetic and molecular biology data for the model plant Arabidopsis thaliana that provides a global research community with centralized access to data for over 30,000 Arabidopsis genes. TAIR's biocurators systematically extract, organize, and interconnect experimental data from the literature along with computational predictions, community submissions, and high throughput datasets to present a high quality and comprehensive picture of Arabidopsis gene function. TAIR provides tools for data visualization and analysis, and enables ordering of seed and DNA stocks, protein chips, and other experimental resources. TAIR actively engages with its users who contribute expertise and data that augments the work of the curatorial staff. TAIR's focus in an extensive and evolving ecosystem of online resources for plant biology is on the critically important role of extracting experimentally based research findings from the literature and making that information computationally accessible. In response to the loss of government grant funding, the TAIR team founded a nonprofit entity, Phoenix Bioinformatics, with the aim of developing sustainable funding models for biological databases, using TAIR as a test case. Phoenix has successfully transitioned TAIR to subscription-based funding while still keeping its data relatively open and accessible.
                Bookmark

                Author and article information

                Contributors
                luis.brieba@cinvestav.mx
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 October 2021
                18 October 2021
                2021
                : 11
                : 20582
                Affiliations
                [1 ]GRID grid.418275.d, ISNI 0000 0001 2165 8782, Laboratorio Nacional de Genómica para la Biodiversidad, , Centro de Investigación y de Estudios Avanzados del IPN, ; Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821 Irapuato, Guanajuato Mexico
                [2 ]GRID grid.9486.3, ISNI 0000 0001 2159 0001, Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, , Universidad Nacional Autónoma de México (UNAM), ; Apartado Postal 510-3, 62250 Cuernavaca, Morelos Mexico
                [3 ]GRID grid.176731.5, ISNI 0000 0001 1547 9964, Present Address: Department of Pharmacology and Toxicology, , The University of Texas Medical Branch at Galveston, ; Galveston, TX 77555 USA
                Article
                151
                10.1038/s41598-021-00151-7
                8523556
                34663822
                5394b048-d4ac-4964-b472-d318329baea4
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 July 2021
                : 7 October 2021
                Funding
                Funded by: Ciencia de Frontera-CONACYTPG
                Award ID: 170713
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                dna,enzymes
                Uncategorized
                dna, enzymes

                Comments

                Comment on this article