111
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain serotonergic circuitries Translated title: Circuitos srotoninérgicos cerebrales Translated title: Circuits sérotoninergiques centraux

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain serotonergic circuitries interact with other neurotransmitter systems on a multitude of different molecular levels. In humans, as in other mammalian species, serotonin (5-HT) plays a modulatory role in almost every physiological function. Furthermore, serotonergic dysfunction is thought to be implicated in several psychiatric and neurodegenerative disorders. We describe the neuroanatomy and neurochemistry of brain serotonergic circuitries. The contribution of emergent in vivo imaging methods to the regional localization of binding site receptors and certain aspects of their functional connectivity in correlation to behavior is also discussed. 5-HT cell bodies, mainly localized in the raphe nuclei, send axons to almost every brain region. It is argued that the specificity of the local chemocommunication between 5-HT and other neuronal elements mainly depends on mechanisms regulating the extracellular concentration of 5-HT, the diversity of high-affinity membrane receptors, and their specific transduction modalities.

          Translated abstract

          Los circuitos serotoninérgicos cerebrales interactúan con otros sistemas de neurotransmisión en una infinidad de diferentes niveles moleculares. En humanos, como también en otras especies de mamíferos, la serotonina (5HT) tiene un papel modulador en casi todas las funciones fisiológicas. Además se postula que la disfunción serotoninérgica participa en diversos trastornos psiquiátricos y neurodegenerativos. Se describe la neuroanatomía y la neuroquímica de los circuitos serotoninérgicos cerebrales. También se discute la contribución de novedosos métodos de imágenes in vivo para la localización regional de sitios de unión de receptores y ciertos aspectos de su conectividad funcional en relación con la conducta. Los cuerpos de 5-HT, localizados principalmente en los núcleos del rafe, envían axones a casi todas las regiones cerebrales. Se argumenta que la especificidad de la comunicación química local entre 5-HT y otros elementos neuronales depende principalmente de mecanismos que regulan la concentración extracelular de 5-HT, de la diversidad de receptores de membrana de alta afinidad y de sus modalidades de transducción específicas.

          Translated abstract

          Les circuits sérotoninergiques centraux sont le théâtre d'une myriade d'interactions moléculaires dévolues à leur communication. Chez l'homme comme chez les autres espèces, la sérotonine (5-HT) joue un rôle modulateur dans la presque totalité des fonctions physiologiques. De plus, un dysfonctionnement des systèmes sérotoninergiques est présumé impliqué dans diverses pathologies psychiatriques et neurodégénératives. Nous décrivons en détail les circuits sérotoninergiques centraux à partir d'études neuroanatomiques postmortem. La contribution des approches modernes in vivo permettant la localisation régionale de récepteurs et certains aspects de leur fonctionnalité corrélée à des comportements sont aussi discutées. Les corps cellulaires à 5-HT principalement localisés dans les noyaux des raphés projettent des axones dans la plupart des régions du cerveau. Ainsi la spécificité de la communication chimique locale établie entre les éléments neuronaux à 5-HT et les autres dépend de mécanismes régulant la concentration extracellulaire en 5-HT, de la diversité des récepteurs membranaires de haute affinité et de leurs modalités de transduction.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior.

          Hallucinogens, including mescaline, psilocybin, and lysergic acid diethylamide (LSD), profoundly affect perception, cognition, and mood. All known drugs of this class are 5-HT(2A) receptor (2AR) agonists, yet closely related 2AR agonists such as lisuride lack comparable psychoactive properties. Why only certain 2AR agonists are hallucinogens and which neural circuits mediate their effects are poorly understood. By genetically expressing 2AR only in cortex, we show that 2AR-regulated pathways on cortical neurons are sufficient to mediate the signaling pattern and behavioral response to hallucinogens. Hallucinogenic and nonhallucinogenic 2AR agonists both regulate signaling in the same 2AR-expressing cortical neurons. However, the signaling and behavioral responses to the hallucinogens are distinct. While lisuride and LSD both act at 2AR expressed by cortex neurons to regulate phospholipase C, LSD responses also involve pertussis toxin-sensitive heterotrimeric G(i/o) proteins and Src. These studies identify the long-elusive neural and signaling mechanisms responsible for the unique effects of hallucinogens.
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular biology of 5-HT receptors.

            Serotonin (5-hydroxytryptamine; 5-HT) is a monoamine neurotransmitter whose effects are mediated by at least 13 distinct G protein-coupled receptors (GPCRs) of the type A family which includes the monoamine receptors and a combination of ligand-gated ion channels (5-HT3) of the Cys loop family which constitutes heteropentamers. 5-HT receptors are currently divided into seven classes (5-HT1 to 5-HT7), based on structural, transductional and operational features. While this degree of physical diversity clearly underscores the physiological importance of serotonin, evidence for an even greater degree of operational diversity is supported by the existence of a great number of splice and editing variants for several 5-HT receptors, their possible modulation by accessory proteins and chaperones, as well as their potential to form homo or heteromers both at the GPCR and at the ligand-gated channel level.
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice.

              The oxytocin receptor has been implicated in the regulation of reproductive physiology as well as social and emotional behaviors. The neurochemical mechanisms by which oxytocin receptor modulates social and emotional behavior remains elusive, in part because of a lack of sensitive and selective antibodies for cellular localization. To more precisely characterize oxytocin receptor-expressing neurons within the brain, we generated an oxytocin receptor-reporter mouse in which part of the oxytocin receptor gene was replaced with Venus cDNA (a variant of yellow fluorescent protein). Examination of the Venus expression revealed that, in the raphe nuclei, about one-half of tryptophan hydroxylase-immunoreactive neurons were positive for Venus, suggesting a potential role for oxytocin in the modulation of serotonin release. Oxytocin infusion facilitated serotonin release within the median raphe nucleus and reduced anxiety-related behavior. Infusion of a 5-HT(2A/2C) receptor antagonist blocked the anxiolytic effect of oxytocin, suggesting that oxytocin receptor activation in serotonergic neurons mediates the anxiolytic effects of oxytocin. This is the first demonstration that oxytocin may regulate serotonin release and exert anxiolytic effects via direct activation of oxytocin receptor expressed in serotonergic neurons of the raphe nuclei. These results also have important implications for psychiatric disorders such as autism and depression in which both the oxytocin and serotonin systems have been implicated.

                Author and article information

                Contributors
                Département de Psychiatrie, Hôpitaux Universitaires de Genève, Geneva, Switzerland
                Centre National de la Recherche Scientifique, UMR 5167, Faculté de Médecine Laennec, Université C. Bernard, Lyon, France
                Journal
                Dialogues Clin Neurosci
                Dialogues Clin Neurosci
                Dialogues in Clinical Neuroscience
                Les Laboratoires Servier (France )
                1294-8322
                1958-5969
                December 2010
                : 12
                : 4
                : 471-487
                Affiliations
                Département de Psychiatrie, Hôpitaux Universitaires de Genève, Geneva, Switzerland
                Centre National de la Recherche Scientifique, UMR 5167, Faculté de Médecine Laennec, Université C. Bernard, Lyon, France
                Author notes
                [* ] To whom correspondence should be addressed. E-mail: yves.charnay@ 123456unige.ch
                Article
                10.31887/DCNS.2010.12.4/ycharnay
                3181988
                21319493
                53987f20-f0e0-4f89-9c89-45385ddfd36a
                Copyright: © 2010 LLS

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Pharmacological Aspects

                Neurosciences
                raphe nucleus,in vivo imaging,neuroanatomy,serotonin receptor,5-hydroxytryptamine,human brain

                Comments

                Comment on this article

                Related Documents Log