0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Gene Expression Analysis in Microdissected Renal Tissue

      ,

      Nephron

      S. Karger AG

      Gene expression, Kidney, Nephron, RT-PCR, cDNA array, Laser microdissection

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The architecture and compartmentalization of the kidney has stimulated the development of an array of microtechniques to study the functional differences between the distinct nephron segments. With the vast amounts of genomic sequence data now available, the groundwork has been laid for a comprehensive characterization of the molecular pathways defining the differences in nephron function. With the development of sensitive gene expression techniques the tools for a comprehensive molecular analysis of specific renal microenvironments have been provided: Quantitative RT-PCR technologies now allow the analysis of specific mRNAs from as little as single microdissected renal cells. A more global view of gene expression regulation is a logical development from the application of large scale profiling techniques. In this review, we will discuss the power and pitfalls of these approaches, including their potential for the functional characterization of nephron heterogeneity and diagnostic application in renal disease.

          Related collections

          Most cited references 10

          • Record: found
          • Abstract: found
          • Article: not found

          Gene-expression profiles in hereditary breast cancer.

          Many cases of hereditary breast cancer are due to mutations in either the BRCA1 or the BRCA2 gene. The histopathological changes in these cancers are often characteristic of the mutant gene. We hypothesized that the genes expressed by these two types of tumors are also distinctive, perhaps allowing us to identify cases of hereditary breast cancer on the basis of gene-expression profiles. RNA from samples of primary tumor from seven carriers of the BRCA1 mutation, seven carriers of the BRCA2 mutation, and seven patients with sporadic cases of breast cancer was compared with a microarray of 6512 complementary DNA clones of 5361 genes. Statistical analyses were used to identify a set of genes that could distinguish the BRCA1 genotype from the BRCA2 genotype. Permutation analysis of multivariate classification functions established that the gene-expression profiles of tumors with BRCA1 mutations, tumors with BRCA2 mutations, and sporadic tumors differed significantly from each other. An analysis of variance between the levels of gene expression and the genotype of the samples identified 176 genes that were differentially expressed in tumors with BRCA1 mutations and tumors with BRCA2 mutations. Given the known properties of some of the genes in this panel, our findings indicate that there are functional differences between breast tumors with BRCA1 mutations and those with BRCA2 mutations. Significantly different groups of genes are expressed by breast cancers with BRCA1 mutations and breast cancers with BRCA2 mutations. Our results suggest that a heritable mutation influences the gene-expression profile of the cancer.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Transcriptional Program in the Response of Human Fibroblasts to Serum

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Real-time quantitative RT-PCR after laser-assisted cell picking.

              The present study describes a technique for quantitation of mRNA in a few isotypic cells obtained from an intact organ structure by combining laser-assisted cell picking and real-time PCR. The microscopically controlled lasering of selected cells in stained tissue sections was applied to lung alveolar macrophages, which are unique in that they can alternatively be gathered as a pure cell population from intact lungs by bronchoalveolar lavage as a reference technique. TNF-alpha was chosen as the transcriptionally inducible target gene to be quantified in alveolar macrophages of control rat lung, as well as low- and high-challenge lungs stimulated by endotoxin and IFN-gamma nebulization. Online fluorescence detection for quantitation of the number of amplified copies was based on 5' nuclease activity of Taq polymerase cleaving a sequence-specific dual-labeled fluorogenic hybridization probe. A pseudogene-free sequence of PBGD served as an internal calibrator for comparative quantitation of target. A quick procedure and minimized loss of template were achieved by avoiding RNA extraction, DNase digestion and nested-PCR. Using this approach, we demonstrated dose-dependent manifold upregulation of the ratio of TNF-alpha mRNA copies per one copy of PBGD mRNA in alveolar macrophages of the challenged lungs. The quantitative data obtained from laser-picked alveolar macrophages were well matched with those of lavaged alveolar macrophages carried out in parallel. We suggest that this new combination of laser-assisted cell picking and real-time PCR has great promise for quantifying mRNA expression in a few single cells or oligocellular clusters in intact organs, allowing assessment of transcriptional regulation in defined cell populations.
                Bookmark

                Author and article information

                Journal
                NEF
                Nephron
                10.1159/issn.1660-8151
                Nephron
                S. Karger AG
                1660-8151
                2235-3186
                2002
                September 2002
                26 September 2002
                : 92
                : 3
                : 522-528
                Affiliations
                Medizinische Poliklinik, Ludwig-Maximilians-University of Munich, Germany
                Article
                64099 Nephron 2002;92:522–528
                10.1159/000064099
                12372933
                © 2002 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 3, References: 51, Pages: 7
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/64099
                Categories
                Molecular Biology in Renal Diseases. Section Editor: F.P. Schena, Bari

                Cardiovascular Medicine, Nephrology

                Gene expression, Laser microdissection, cDNA array, RT-PCR, Nephron, Kidney

                Comments

                Comment on this article