6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generation of Germ-Free Ciona intestinalis for Studies of Gut-Microbe Interactions

      methods-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microbes associate with animal hosts, often providing shelter in a nutrient-rich environment. The gut, however, can be a harsh environment with members of the microbiome settling in distinct niches resulting in more stable, adherent biofilms. These diverse communities can provide orders of magnitude more gene products than the host genome; selection and maintenance of a functionally relevant and useful microbiome is now recognized to be an essential component of homeostasis. Germ-free (GF) model systems allow dissection of host-microbe interactions in a simple and direct way where each member of the symbiosis can be studied in isolation. In addition, because immune defenses in the gut are often naïve in GF animals, host immune recognition and responses during the process of colonization can be studied. Ciona intestinalis, a basal chordate, is a well-characterized developmental model system and holds promise for addressing some of these important questions. With transparent juveniles, Ciona can be exposed to distinct bacterial isolates by inoculating GF artificial seawater; concentrated bacteria can subsequently be visualized in vivo if fluorescent stains are utilized. Rearing GF Ciona is a first step in untangling the complex dialogue between bacteria and innate immunity during colonization.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota.

          Animals have developed the means for supporting complex and dynamic consortia of microorganisms during their life cycle. A transcendent view of vertebrate biology therefore requires an understanding of the contributions of these indigenous microbial communities to host development and adult physiology. These contributions are most obvious in the gut, where studies of gnotobiotic mice have disclosed that the microbiota affects a wide range of biological processes, including nutrient processing and absorption, development of the mucosal immune system, angiogenesis, and epithelial renewal. The zebrafish (Danio rerio) provides an opportunity to investigate the molecular mechanisms underlying these interactions through genetic and chemical screens that take advantage of its transparency during larval and juvenile stages. Therefore, we developed methods for producing and rearing germ-free zebrafish through late juvenile stages. DNA microarray comparisons of gene expression in the digestive tracts of 6 days post fertilization germ-free, conventionalized, and conventionally raised zebrafish revealed 212 genes regulated by the microbiota, and 59 responses that are conserved in the mouse intestine, including those involved in stimulation of epithelial proliferation, promotion of nutrient metabolism, and innate immune responses. The microbial ecology of the digestive tracts of conventionally raised and conventionalized zebrafish was characterized by sequencing libraries of bacterial 16S rDNA amplicons. Colonization of germ-free zebrafish with individual members of its microbiota revealed the bacterial species specificity of selected host responses. Together, these studies establish gnotobiotic zebrafish as a useful model for dissecting the molecular foundations of host-microbial interactions in the vertebrate digestive tract.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva.

            The ascidian chordate Ciona intestinalis is an established model organism frequently exploited to examine cellular development and a rapidly emerging model organism with a strong potential for developmental systems biology studies. However, there is no standardized developmental table for this organism. In this study, we made the standard web-based image resource called FABA: Four-dimensional Ascidian Body Atlas including ascidian's three-dimensional (3D) and cross-sectional images through the developmental time course. These images were reconstructed from more than 3,000 high-resolution real images collected by confocal laser scanning microscopy (CLSM) at newly defined 26 distinct developmental stages (stages 1-26) from fertilized egg to hatching larva, which were grouped into six periods named the zygote, cleavage, gastrula, neurula, tailbud, and larva periods. Our data set will be helpful in standardizing developmental stages for morphology comparison as well as for providing the guideline for several functional studies of a body plan in chordate. Copyright 2007 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Methods for generating and colonizing gnotobiotic zebrafish.

              Vertebrates are colonized at birth by complex and dynamic communities of microorganisms that can contribute significantly to host health and disease. The ability to raise animals in the absence of microorganisms has been a powerful tool for elucidating the relationships between animal hosts and their microbial residents. The optical transparency of the developing zebrafish and relative ease of generating germ-free (GF) zebrafish make it an attractive model organism for gnotobiotic research. Here we provide a protocol for generating zebrafish embryos; deriving and rearing GF zebrafish; and colonizing zebrafish with microorganisms. Using these methods, we typically obtain 80-90% sterility rates in our GF derivations with 90% survival in GF animals and 50-90% survival in colonized animals through larval stages. Obtaining embryos for derivation requires approximately 1-2 h, with a 3- to 8-h incubation period before derivation. Derivation of GF animals takes 1-1.5 h, and daily maintenance requires 1-2 h.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                27 December 2016
                2016
                : 7
                : 2092
                Affiliations
                [1] 1College of Marine Science, University of South Florida (USF) St. Petersburg, FL, USA
                [2] 2Department of Pediatrics, College of Medicine, University of South Florida (USF) St. Petersburg, FL, USA
                Author notes

                Edited by: Robert Brucker, Rowland Institute at Harvard, USA

                Reviewed by: Tony De Tomaso, University of California, Santa Barbara, USA; Juris A. Grasis, San Diego State University, USA

                *Correspondence: Larry J. Dishaw ldishaw@ 123456gmail.com

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2016.02092
                5186754
                28082961
                53afd13a-1ddd-4699-8cfa-320e04f4711a
                Copyright © 2016 Leigh, Liberti and Dishaw.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 September 2016
                : 09 December 2016
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 13, Pages: 8, Words: 4833
                Funding
                Funded by: National Science Foundation 10.13039/100000001
                Award ID: IOS1456301
                Award ID: 1144244
                Categories
                Microbiology
                Methods

                Microbiology & Virology
                germ-free,ciona intestinalis,gut colonization,microbiome,host-microbe interaction

                Comments

                Comment on this article