40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Artificially stabilizing contacts between VE-cadherin and VE-PTP reduce vascular permeability and leukocyte extravasation in vivo.

          Abstract

          We have recently shown that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial membrane protein, associates with VE-cadherin and is required for optimal VE-cadherin function and endothelial cell contact integrity. The dissociation of VE-PTP from VE-cadherin is triggered by vascular endothelial growth factor (VEGF) and by the binding of leukocytes to endothelial cells in vitro, suggesting that this dissociation is a prerequisite for the destabilization of endothelial cell contacts. Here, we show that VE-cadherin/VE-PTP dissociation also occurs in vivo in response to LPS stimulation of the lung or systemic VEGF stimulation. To show that this dissociation is indeed necessary in vivo for leukocyte extravasation and VEGF-induced vascular permeability, we generated knock-in mice expressing the fusion proteins VE-cadherin-FK 506 binding protein and VE-PTP-FRB* under the control of the endogenous VE-cadherin promoter, thus replacing endogenous VE-cadherin. The additional domains in both fusion proteins allow the heterodimeric complex to be stabilized by a chemical compound (rapalog). We found that intravenous application of the rapalog strongly inhibited VEGF-induced (skin) and LPS-induced (lung) vascular permeability and inhibited neutrophil extravasation in the IL-1β inflamed cremaster and the LPS-inflamed lung. We conclude that the dissociation of VE-PTP from VE-cadherin is indeed required in vivo for the opening of endothelial cell contacts during induction of vascular permeability and leukocyte extravasation.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Transcellular diapedesis is initiated by invasive podosomes.

          Diapedesis is critical for immune system function and inflammatory responses. This occurs by migration of blood leukocytes either directly through individual microvascular endothelial cells (the "transcellular" route) or between them (the "paracellular" route). Mechanisms for transcellular pore formation in endothelium remain unknown. Here we demonstrate that lymphocytes used podosomes and extended "invasive podosomes" to palpate the surface of, and ultimately form transcellular pores through, the endothelium. In lymphocytes, these structures were dependent on Src kinase and the actin regulatory protein WASP; inhibition of podosome formation selectively blocked the transcellular route of diapedesis. In endothelium, membrane fusion events dependent on the SNARE-containing membrane fusion complex and intracellular calcium were required for efficient transcellular pore formation in response to podosomes. These findings provide insights into basic mechanisms for leukocyte trafficking and the functions of podosomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD99 plays a major role in the migration of monocytes through endothelial junctions.

            CD99 is a heavily O-glycosylated 32-kD type I transmembrane protein that is expressed on most hematopoietic cells. We show here that CD99 is expressed on endothelial cells and is concentrated at the borders between confluent cells. We found that a monoclonal antibody to CD99, hec2, selectively inhibited diapedesis of monocytes across endothelial cells by >90%. Diapedesis involved the homophilic interaction of CD99 on monocytes with CD99 on endothelial junctions. CD99 functioned distally to the point at which platelet-endothelial cell adhesion molecule 1 (PECAM-1, also known as CD31), another adhesion molecule involved in transmigration, played its critical role. Confocal microscopy showed that anti-PECAM-1 arrested leukocytes on the apical surface of endothelium, whereas blocking CD99 arrested monocytes at a point where they were partially through the junction. Therefore, diapedesis, the forward migration of leukocytes through endothelial junctions, is regulated sequentially by two distinct molecules, PECAM-1 and CD99.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration.

              Leukocyte transendothelial migration (TEM) has been modeled as a multistep process beginning with rolling adhesion, followed by firm adhesion, and ending with either transcellular or paracellular passage of the leukocyte across the endothelial monolayer. In the case of paracellular TEM, endothelial cell (EC) junctions are transiently disassembled to allow passage of leukocytes. Numerous lines of evidence demonstrate that tyrosine phosphorylation of adherens junction proteins, such as vascular endothelial cadherin (VE-cadherin) and beta-catenin, correlates with the disassembly of junctions. However, the role of tyrosine phosphorylation in the regulation of junctions during leukocyte TEM is not completely understood. Using human leukocytes and EC, we show that ICAM-1 engagement leads to activation of two tyrosine kinases, Src and Pyk2. Using phospho-specific Abs, we show that engagement of ICAM-1 induces phosphorylation of VE-cadherin on tyrosines 658 and 731, which correspond to the p120-catenin and beta-catenin binding sites, respectively. These phosphorylation events require the activity of both Src and Pyk2. We find that inhibition of endothelial Src with PP2 or SU6656 blocks neutrophil transmigration (71.1 +/- 3.8% and 48.6 +/- 3.8% reduction, respectively), whereas inhibition of endothelial Pyk2 also results in decreased neutrophil transmigration (25.5 +/- 6.0% reduction). Moreover, overexpression of the nonphosphorylatable Y658F or Y731F mutants of VE-cadherin impairs transmigration of neutrophils compared with overexpression of wild-type VE-cadherin (32.7 +/- 7.1% and 38.8 +/- 6.5% reduction, respectively). Our results demonstrate that engagement of ICAM-1 by leukocytes results in tyrosine phosphorylation of VE-cadherin, which is required for efficient neutrophil TEM.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                21 November 2011
                : 208
                : 12
                : 2393-2401
                Affiliations
                [1 ]Max-Planck-Institute for Molecular Biomedicine, D-48149 Münster, Germany
                [2 ]Department of Anesthesiology and Critical Care Medicine, University of Münster, D-48149 Münster, Germany
                Author notes
                CORRESPONDENCE Dietmar Vestweber: vestweb@ 123456mpi-muenster.mpg.de
                Article
                20110525
                10.1084/jem.20110525
                3256962
                22025303
                53c1de70-736a-4063-b491-bfab8c144ca6
                © 2011 Broermann et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 15 March 2011
                : 27 September 2011
                Categories
                Brief Definitive Report

                Medicine
                Medicine

                Comments

                Comment on this article