Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Echinacea-induced cytosolic Ca2+ elevation in HEK293

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      BackgroundWith a traditional medical use for treatment of various ailments, herbal preparations of Echinacea are now popularly used to improve immune responses. One likely mode of action is that alkamides from Echinacea bind to cannabinoid type 2 (CB2) receptors and induce a transient increase in intracellular Ca2+. Here, we show that unidentified compounds from Echinacea purpurea induce cytosolic Ca2+ elevation in non-immune-related cells, which lack CB2 receptors and that the Ca2+ elevation is not influenced by alkamides.MethodsA non-immune human cell line, HEK293, was chosen to evaluate E. purpurea root extracts and constituents as potential regulators of intracellular Ca2+ levels. Changes in cytosolic Ca2+ levels were monitored and visualized by intracellular calcium imaging. U73122, a phospholipase C inhibitor, and 2-aminoethoxydiphenyl borate (2-APB), an antagonist of inositol-1,4,5-trisphosphate (IP3) receptor, were tested to determine the mechanism of this Ca2+ signaling pathway. E. purpurea root ethanol extracts were fractionated by preparative HPLC, screened for bioactivity on HEK293 cells and by GC-MS for potential constituent(s) responsible for this bioactivity.ResultsA rapid transient increase in cytosolic Ca2+ levels occurs when E. purpurea extracts are applied to HEK293 cells. These stimulatory effects are phospholipase C and IP3 receptor dependent. Echinacea-evoked responses could not be blocked by SR 144528, a specific CB2 receptor antagonist, indicating that CB2 is not involved. Ca2+ elevation is sustained after the Echinacea-induced Ca2+ release from intracellular Ca2+ stores; this longer-term effect is abolished by 2-APB, indicating a possible store operated calcium entry involvement. Of 28 HPLC fractions from E. purpurea root extracts, six induce cytosolic Ca2+ increase. Interestingly, GC-MS analysis of these fractions, as well as treatment of HEK293 cells with known individual and combined chemicals, indicates the components thought to be responsible for the major immunomodulatory bioactivity of Echinacea do not explain the observed Ca2+ response. Rather, lipophilic constituents of unknown structures are associated with this bioactivity.ConclusionsOur data indicate that as yet unidentified constituents from Echinacea stimulate an IP3 receptor and phospholipase C mediation of cytosolic Ca2+ levels in non-immune mammalian cells. This pathway is distinct from that induced in immune associated cells via the CB2 receptor.

      Related collections

      Most cited references 30

      • Record: found
      • Abstract: not found
      • Article: not found

      Calcium signalling: dynamics, homeostasis and remodelling.

      Ca2+ is a highly versatile intracellular signal that operates over a wide temporal range to regulate many different cellular processes. An extensive Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics. Rapid highly localized Ca2+ spikes regulate fast responses, whereas slower responses are controlled by repetitive global Ca2+ transients or intracellular Ca2+ waves. Ca2+ has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells.

        The 293 cell line was derived by transformation of primary cultures of human embryonic kidney (HEK) cells with sheared adenovirus (Ad)5 DNA. A combination of immunostaining, immunoblot, and microarray analysis showed that 293 cells express the neurofilament (NF) subunits NF-L, NF-M, NF-H, and a-internexin as well as many other proteins typically found in neurons. Three other independently derived HEK lines, two transformed by Ad5 and one by Ad12, also expressed NFs, as did one human embryonic retinal cell line transformed with Ad5. Two rodent kidney lines transformed with Ad12 were also found to express NF proteins, although several rodent kidney cell lines transformed by Ad5 DNA and three HEK cell lines transformed by the SV40 early region did not express NFs. These results suggest that human Ads preferentially transform human neuronal lineage cells. We also demonstrate that the widely used HEK293 cells have an unexpected relationship to neurons, a finding that may require reinterpretation of many previous studies in which it was assumed that HEK293 cells resembled more typical kidney epithelial cells.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release.

          Since its introduction to Ca2+ signaling in 1997, 2-aminoethoxydiphenyl borate (2-APB) has been used in many studies to probe for the involvement of inositol 1,4,5-trisphosphate receptors in the generation of Ca2+ signals. Due to reports of some nonspecific actions of 2-APB, and the fact that its principal antagonistic effect is on Ca2+ entry rather than Ca2+ release, this compound may not have the utility first suggested. However, 2-APB has thrown up some interesting results, particularly with respect to store-operated Ca2+ entry in nonexcitable cells. These data indicate that although it must be used with caution, 2-APB can be useful in probing certain aspects of Ca2+ signaling.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
            [2 ]Center for Research on Dietary Botanical Supplements at Iowa State University and the University of Iowa, Ames, IA, 50011, USA
            [3 ]Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
            [4 ]Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
            [5 ]Department of Biology and Chemistry, Morningside College, Sioux City, IA 51106, USA
            [6 ]Department of Kinesiology, Iowa State University, Ames, IA, 50011, USA
            Contributors
            Journal
            BMC Complement Altern Med
            BMC Complementary and Alternative Medicine
            BioMed Central
            1472-6882
            2010
            23 November 2010
            : 10
            : 72
            3002894
            1472-6882-10-72
            21092239
            10.1186/1472-6882-10-72
            Copyright ©2010 Wu et al; licensee BioMed Central Ltd.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Research Article

            Complementary & Alternative medicine

            Comments

            Comment on this article