53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The systemic and organ-specific human fibrotic disorders collectively represent one of the most serious health problems world-wide causing a large proportion of the total world population mortality. The molecular pathways involved in their pathogenesis are complex and despite intensive investigations have not been fully elucidated. Whereas chronic inflammatory cell infiltration is universally present in fibrotic lesions, the central role of monocytes and macrophages as regulators of inflammation and fibrosis has only recently become apparent. However, the precise mechanisms involved in the contribution of monocytes/macrophages to the initiation, establishment, or progression of the fibrotic process remain largely unknown. Several monocyte and macrophage subpopulations have been identified, with certain phenotypes promoting inflammation whereas others display profibrotic effects. Given the unmet need for effective treatments for fibroproliferative diseases and the crucial regulatory role of monocyte/macrophage subpopulations in fibrogenesis, the development of therapeutic strategies that target specific monocyte/macrophage subpopulations has become increasingly attractive. We will provide here an overview of the current understanding of the role of monocyte/macrophage phenotype subpopulations in animal models of tissue fibrosis and in various systemic and organ-specific human fibrotic diseases. Furthermore, we will discuss recent approaches to the design of effective anti-fibrotic therapeutic interventions by targeting the phenotypic differences identified between the various monocyte and macrophage subpopulations.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Liver fibrosis.

          Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophages: master regulators of inflammation and fibrosis.

            Macrophages are found in close proximity with collagen-producing myofibroblasts and indisputably play a key role in fibrosis. They produce profibrotic mediators that directly activate fibroblasts, including transforming growth factor-beta1 and platelet-derived growth factor, and control extracellular matrix turnover by regulating the balance of various matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Macrophages also regulate fibrogenesis by secreting chemokines that recruit fibroblasts and other inflammatory cells. With their potential to act in both a pro- and antifibrotic capacity, as well as their ability to regulate the activation of resident and recruited myofibroblasts, macrophages and the factors they express are integrated into all stages of the fibrotic process. These various, and sometimes opposing, functions may be performed by distinct macrophage subpopulations, the identification of which is a growing focus of fibrosis research. Although collagen-secreting myofibroblasts once were thought of as the master "producers" of fibrosis, this review will illustrate how macrophages function as the master "regulators" of fibrosis. Copyright Thieme Medical Publishers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases.

              Fibroproliferative diseases, including the pulmonary fibroses, systemic sclerosis, liver cirrhosis, cardiovascular disease, progressive kidney disease, and macular degeneration, are a leading cause of morbidity and mortality and can affect all tissues and organ systems. Fibrotic tissue remodeling can also influence cancer metastasis and accelerate chronic graft rejection in transplant recipients. Nevertheless, despite its enormous impact on human health, there are currently no approved treatments that directly target the mechanism(s) of fibrosis. The primary goals of this Review series on fibrotic diseases are to discuss some of the major fibroproliferative diseases and to identify the common and unique mechanisms of fibrogenesis that might be exploited in the development of effective antifibrotic therapies.
                Bookmark

                Author and article information

                Contributors
                peter.wermuth@jefferson.edu
                sergio.jimenez@jefferson.edu
                Journal
                Clin Transl Med
                Clin Transl Med
                Clinical and Translational Medicine
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2001-1326
                7 February 2015
                7 February 2015
                2015
                : 4
                : 2
                Affiliations
                Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Bluemle Life Science Building Suite 509, 233 South 10th Street, Philadelphia, PA 19107-5541 USA
                Article
                47
                10.1186/s40169-015-0047-4
                4384891
                25852818
                53e72582-2f1f-4b52-a784-19e8da6fdfa1
                © Jimenez and Wermuth; licensee Springer. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

                History
                : 8 December 2014
                : 20 January 2015
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Medicine
                monocytes,macrophages,macrophage polarization,fibrosis,chemokines,cytokines,fibrosing disorders
                Medicine
                monocytes, macrophages, macrophage polarization, fibrosis, chemokines, cytokines, fibrosing disorders

                Comments

                Comment on this article