16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adsorption of typical pharmaceuticals and personal care products (PPCPs) (such as naproxen, ibuprofen and oxybenzone) from aqueous solutions was studied by using the highly porous metal-organic framework (MOF) MIL-101 with and without functionalization. Adsorption results showed that MIL-101s with H-donor functional groups such as –OH and –NH 2 were very effective for naproxen adsorption, despite a decrease in porosity, probably because of H-bonding between O atoms on naproxen and H atoms on the adsorbent. For this reason, MIL-101 with two functional groups capable of H-bonding (MIL-101-(OH) 2) exhibited remarkable adsorption capacity based on adsorbent surface area. The favorable contributions of –OH and –(OH) 2 on MIL-101 in the increased adsorption of ibuprofen and oxybenzone (especially based on porosity) confirmed again the importance of H-bonding mechanism. The adsorbent with the highest adsorption capacity, MIL-101-OH, was very competitive when compared with carbonaceous materials, mesoporous materials, and pristine MIL-101. Moreover, the MIL-101-OH could be recycled several times by simply washing with ethanol, suggesting potential application in the adsorptive removal of PPCPs from water.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Water adsorption in MOFs: fundamentals and applications.

          This review article presents the fundamental and practical aspects of water adsorption in Metal-Organic Frameworks (MOFs). The state of the art of MOF stability in water, a crucial issue to many applications in which MOFs are promising candidates, is discussed here. Stability in both gaseous (such as humid gases) and aqueous media is considered. By considering a non-exhaustive yet representative set of MOFs, the different mechanisms of water adsorption in this class of materials are presented: reversible and continuous pore filling, irreversible and discontinuous pore filling through capillary condensation, and irreversibility arising from the flexibility and possible structural modifications of the host material. Water adsorption properties of more than 60 MOF samples are reported. The applications of MOFs as materials for heat-pumps and adsorbent-based chillers and proton conductors are also reviewed. Some directions for future work are suggested as concluding remarks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions.

            Provision of clean water is one of the most important issues worldwide because of continuing economic development and the steady increase in the global population. However, clean water resources are decreasing everyday, because of contamination with various pollutants including organic chemicals. Pharmaceutical and personal care products, herbicides/pesticides, dyes, phenolics, and aromatics (from sources such as spilled oil) are typical organics that should be removed from water. Because of their huge porosities, designable pore structures, and facile modification, metal-organic frameworks (MOFs) are used in various adsorption, separation, storage, and delivery applications. In this review, the adsorptive purifications of contaminated water with MOFs are discussed, in order to understand possible applications of MOFs in clean water provision. More importantly, plausible adsorption or interaction mechanisms and selective adsorptions are summarized. The mechanisms of interactions such as electrostatic interaction, acid-base interaction, hydrogen bonding, π-π stacking/interaction, and hydrophobic interaction are discussed for the selective adsorption of organics over MOFs. The adsorption mechanisms will be very helpful not only for understanding adsorptions but also for applications of adsorptions in selective removal, storage, delivery and so on.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review.

              Efficient removal of hazardous materials from the environment has become an important issue from a biological and environmental standpoint. Adsorptive removal of toxic components from fuel, waste-water or air is one of the most attractive approaches for cleaning technologies. Recently, porous metal-organic framework (MOF) materials have been very promising in the adsorption/separation of various liquids and gases due to their unique characteristics. This review summarizes the recent literatures on the adsorptive removal of various hazardous compounds mainly from fuel, water, and air by virgin or modified MOF materials. Possible interactions between the adsorbates and active adsorption sites of the MOFs will be also discussed to understand the adsorption mechanism. Most of the observed results can be explained with the following mechanisms: (1) adsorption onto a coordinatively unsaturated site, (2) adsorption via acid-base interaction, (3) adsorption via π-complex formation, (4) adsorption via hydrogen bonding, (5) adsorption via electrostatic interaction, and (6) adsorption based on the breathing properties of some MOFs and so on.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                03 October 2016
                2016
                : 6
                : 34462
                Affiliations
                [1 ]Department of Chemistry, Kyungpook National University , Daegu 702-701, Korea
                Author notes
                Article
                srep34462
                10.1038/srep34462
                5046089
                27695005
                53f54627-ba87-4672-8ff8-601e399f49b0
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 03 May 2016
                : 14 September 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article