36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The MMP-9/TIMP-1 Axis Controls the Status of Differentiation and Function of Myelin-Forming Schwann Cells in Nerve Regeneration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Myelinating Schwann cells (mSCs) form myelin in the peripheral nervous system. Because of the works by us and others, matrix metalloproteinase-9 (MMP-9) has recently emerged as an essential component of the Schwann cell signaling network during sciatic nerve regeneration.

          Methodology/Principal Findings

          In the present study, using the genome-wide transcriptional profiling of normal and injured sciatic nerves in mice followed by extensive bioinformatics analyses of the data, we determined that an endogenous, specific MMP-9 inhibitor [tissue inhibitor of metalloproteinases (TIMP)-1] was a top up-regulated gene in the injured nerve. MMP-9 capture followed by gelatin zymography and Western blotting of the isolated samples revealed the presence of the MMP-9/TIMP-1 heterodimers and the activated MMP-9 enzyme in the injured nerve within the first 24 h post-injury. MMP-9 and TIMP-1 co-localized in mSCs. Knockout of the MMP-9 gene in mice resulted in elevated numbers of de-differentiated/immature mSCs in the damaged nerve. Our comparative studies using MMP-9 knockout and wild-type mice documented an aberrantly enhanced proliferative activity and, accordingly, an increased number of post-mitotic Schwann cells, short internodes and additional nodal abnormalities in remyelinated nerves of MMP-9 knockout mice. These data imply that during the first days post-injury MMP-9 exhibits a functionally important anti-mitogenic activity in the wild-type mice. Pharmacological inhibition of MMP activity suppressed the expression of Na v1.7/1.8 channels in the crushed nerves.

          Conclusion/Significance

          Collectively, our data established an essential role of the MMP-9/TIMP-1 axis in guiding the mSC differentiation and the molecular assembly of myelin domains in the course of the nerve repair process. Our findings of the MMP-dependent regulation of Na v channels, which we document here for the first time, provide a basis for therapeutic intervention in sensorimotor pathologies and pain.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          The origin and development of glial cells in peripheral nerves.

          During the development of peripheral nerves, neural crest cells generate myelinating and non-myelinating glial cells in a process that parallels gliogenesis from the germinal layers of the CNS. Unlike central gliogenesis, neural crest development involves a protracted embryonic phase devoted to the generation of, first, the Schwann cell precursor and then the immature Schwann cell, a cell whose fate as a myelinating or non-myelinating cell has yet to be determined. Embryonic nerves therefore offer a particular opportunity to analyse the early steps of gliogenesis from transient multipotent stem cells, and to understand how this process is integrated with organogenesis of peripheral nerves.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase.

            A 25-kDa protein was found to be associated with purified human neutrophil gelatinase. Polyclonal antibodies raised against gelatinase not only recognized gelatinase but also this 25-kDa protein. Specific antibodies against the 25-kDa protein were obtained by affinity purification of the gelatinase antibodies. Immunoblotting and immunoprecipitation studies demonstrated the 135-kDa form of gelatinase to be a complex of 92-kDa gelatinase and the 25-kDa protein, and the 220-kDa form was demonstrated to be a homodimer of the 92-kDa protein, thus explaining the 220-, 135-, and 92-kDa forms characteristic of neutrophil gelatinase. The 25-kDa protein was purified to apparent homogeneity from exocytosed material from phorbol myristate acetate-stimulated neutrophils. The primary structure of the 25-kDa protein was determined as a 178-residue protein. It was susceptible to treatment with N-glycanase, and one N-glycosylation site was identified. The sequence did not match any known human protein, but showed a high degree of similarity with the deduced sequences of rat alpha 2-microglobulin-related protein and the mouse protein 24p3. It is thus a new member of the lipocalin family. The function of the 25-kDa protein, named neutrophil gelatinase-associated lipocalin (NGAL), remains to be determined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL.

              Detection of matrix metalloproteinase (MMP) activities in the urine from patients with a variety of cancers has been closely correlated to disease status. Among these activities, the presence of a group of high molecular weight (HMW) MMPs independently serves as a multivariate predictor of the metastatic phenotype (). The identity of these HMW MMP activities has remained unknown despite their novelty and their potentially important applications in non-invasive cancer diagnosis and/or prognosis. Here, we report the identification of one of these HMW urinary MMPs of approximately 125-kDa as being a complex of gelatinase B (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL). Multiple biochemical approaches verified this identity. Analysis using substrate gel electrophoresis demonstrated that the 125-kDa urinary MMP activity co-migrates with purified human neutrophil MMP-9 x NGAL complex. The 125-kDa urinary MMP-9 x NGAL complex was recognized by a purified antibody against human NGAL as well as by a monospecific anti-human MMP-9 antibody. Furthermore, these same two antibodies were independently capable of specifically immunoprecipitating the 125-kDa urinary MMP activity in a dose-dependent manner. In addition, the complex of MMP-9 x NGAL could be reconstituted in vitro by mixing MMP-9 and NGAL in gelatinase buffers with pH values in the range of urine and in normal urine as well. Finally, the biochemical consequences of the NGAL and MMP-9 interaction were investigated both in vitro using recombinant human NGAL and MMP-9 and in cell culture by overexpressing NGAL in human breast carcinoma cells. Our data demonstrate that NGAL is capable of protecting MMP-9 from degradation in a dose-dependent manner and thereby preserving MMP-9 enzymatic activity. In summary, this study identifies the 125-kDa urinary gelatinase as being a complex of MMP-9 and NGAL and provides evidence that NGAL modulates MMP-9 activity by protecting it from degradation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                16 March 2012
                : 7
                : 3
                : e33664
                Affiliations
                [1 ]Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
                [2 ]Department of Pathology, University of California San Diego, La Jolla, California, United States of America
                [3 ]VA San Diego Healthcare System, La Jolla, California, United States of America
                [4 ]Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
                National Cancer Institute, United States of America
                Author notes

                Conceived and designed the experiments: VIS YK AYS AGR AVC. Performed the experiments: YK AGR AVC HL IS CL JD SAS VSG APM. Analyzed the data: YK AGR AVC HL CL IS JD SAS VSG APM AYS VIS. Contributed reagents/materials/analysis tools: VIS AYS APM. Wrote the paper: VIS AYS.

                Article
                PONE-D-11-23639
                10.1371/journal.pone.0033664
                3306282
                22438979
                54099c46-8348-4679-bc4d-436b9238f762
                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
                History
                : 22 November 2011
                : 14 February 2012
                Page count
                Pages: 15
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Biochemistry
                Enzymes
                Developmental Biology
                Neuroscience
                Cellular Neuroscience
                Medicine
                Neurology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article