129
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Four A rabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB / ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth.

          Abscisic acid (ABA) plays important roles in osmotic stress-responsive gene expression mainly through three bZIP transcription factors, AREB1, AREB2, and ABF3, which are activated by SnRK2s such as SRK2D, SRK2E, and SRK2I (SRK2D/E/I). However, transcription factors other than the three AREB/ABFs that function downstream of SRK2D/E/I remain obscure. Here, we report that ABF1 is a functional homolog of AREB1, AREB2, and ABF3 in ABA-dependent gene expression from a comparative analysis between the areb1 areb2 abf3 abf1 and areb1 areb2 abf3 mutants. Moreover, genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I were mostly impaired in the areb1 areb2 abf3 abf1 quadruple mutant, suggesting that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signaling in response to osmotic stress.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.

          Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulators of PP2C phosphatase activity function as abscisic acid sensors.

            The plant hormone abscisic acid (ABA) acts as a developmental signal and as an integrator of environmental cues such as drought and cold. Key players in ABA signal transduction include the type 2C protein phosphatases (PP2Cs) ABI1 and ABI2, which act by negatively regulating ABA responses. In this study, we identify interactors of ABI1 and ABI2 which we have named regulatory components of ABA receptor (RCARs). In Arabidopsis, RCARs belong to a family with 14 members that share structural similarity with class 10 pathogen-related proteins. RCAR1 was shown to bind ABA, to mediate ABA-dependent inactivation of ABI1 or ABI2 in vitro, and to antagonize PP2C action in planta. Other RCARs also mediated ABA-dependent regulation of ABI1 and ABI2, consistent with a combinatorial assembly of receptor complexes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.

              A myriad of drought stress-inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA-regulated genes, conserved cis-elements, designated ABA-responsive elements (ABREs), control gene expression via bZIP-type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero- or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue-specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large-scale transcriptome analysis, which showed that stress-responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group-Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent gene expression for ABA signaling under conditions of water stress.
                Bookmark

                Author and article information

                Journal
                Plant Cell Environ
                Plant Cell Environ
                pce
                Plant, Cell & Environment
                JohnWiley & Sons Ltd (Oxford, UK )
                0140-7791
                1365-3040
                January 2015
                22 May 2014
                : 38
                : 1
                : 35-49
                Affiliations
                [1 ]Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Bunkyo-ku, Tokyo, 113-8657, Japan
                [2 ]Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences Tsukuba, Ibaraki, 305-8686, Japan
                [3 ]Laboratory of Plant Stress Biology, Graduate School of Life and Environmental Sciences, University of Tsukuba Tsukuba, Ibaraki, 305-8577, Japan
                [4 ]RIKEN Center for Sustainable Resource Science Yokohama, Kanagawa, 230-0045, Japan
                Author notes
                Correspondence: K. Yamaguchi-Shinozaki. Fax: +81-3-5841-8009; e-mail: akys@ 123456mail.ecc.u-tokyo.ac.jp
                Article
                10.1111/pce.12351
                4302978
                24738645
                5419c4c0-0072-42fa-81e9-6ef500df725f
                © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 01 December 2013
                : 08 April 2014
                Categories
                Original Articles

                Plant science & Botany
                abf1,transcriptional regulation,transcriptome analysis.
                Plant science & Botany
                abf1, transcriptional regulation, transcriptome analysis.

                Comments

                Comment on this article