66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel zf-MYND Protein, CHB-3, Mediates Guanylyl Cyclase Localization to Sensory Cilia and Controls Body Size of Caenorhabditis elegans

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cilia are important sensory organelles, which are thought to be essential regulators of numerous signaling pathways. In Caenorhabditis elegans, defects in sensory cilium formation result in a small-body phenotype, suggesting the role of sensory cilia in body size determination. Previous analyses suggest that lack of normal cilia causes the small-body phenotype through the activation of a signaling pathway which consists of the EGL-4 cGMP-dependent protein kinase and the GCY-12 receptor-type guanylyl cyclase. By genetic suppressor screening of the small-body phenotype of a cilium defective mutant, we identified a chb-3 gene. Genetic analyses placed chb-3 in the same pathway as egl-4 and gcy-12 and upstream of egl-4. chb-3 encodes a novel protein, with a zf-MYND motif and ankyrin repeats, that is highly conserved from worm to human. In chb-3 mutants, GCY-12 guanylyl cyclase visualized by tagged GFP (GCY-12::GFP) fails to localize to sensory cilia properly and accumulates in cell bodies. Our analyses suggest that decreased GCY-12 levels in the cilia of chb-3 mutants may cause the suppression of the small-body phenotype of a cilium defective mutant. By observing the transport of GCY-12::GFP particles along the dendrites to the cilia in sensory neurons, we found that the velocities and the frequencies of the particle movement are decreased in chb-3 mutant animals. How membrane proteins are trafficked to cilia has been the focus of extensive studies in vertebrates and invertebrates, although only a few of the relevant proteins have been identified. Our study defines a new regulator, CHB-3, in the trafficking process and also shows the importance of ciliary targeting of the signaling molecule, GCY-12, in sensory-dependent body size regulation in C. elegans. Given that CHB-3 is highly conserved in mammal, a similar system may be used in the trafficking of signaling proteins to the cilia of other species.

          Author Summary

          Caenorhabditis elegans is a 1–2 mm long nematode. Its body size is controlled by sensory inputs; some mutants with defects in sensory perception grow into small size (20%–30% decrease in body volume), although the animals seem to feed normally. The EGL-4 cGMP-dependent protein kinase and the GCY-12 guanylyl cyclase act in sensory neurons to control body size downstream of sensory inputs. GCY-12 is localized to cilia, antenna-like cellular structures of sensory neurons. In the cilia, a number of signaling molecules are localized. Dysfunction of cilia is known to cause several human disorders such as Bardet-Biedl syndrome, illustrating the importance of these organelles. In this study, we identified a novel protein, CHB-3, involved in sensory-dependent body size regulation. Our analyses suggest that CHB-3 protein regulates the trafficking of GCY-12 from the cell bodies to the cilia. Without CHB-3 protein, GCY-12 fails to localize to cilia and body size is not controlled properly. Thus, the cilia are a special place for sensory information processing in body size regulation. Our analyses identified CHB-3 as a novel trafficking regulator of ciliary protein(s).

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences.

          We describe a dominant behavioral marker, rol-6(su-1006), and an efficient microinjection procedure which facilitate the recovery of Caenorhabditis elegans transformants. We use these tools to study the mechanism of C.elegans DNA transformation. By injecting mixtures of genetically marked DNA molecules, we show that large extrachromosomal arrays assemble directly from the injected molecules and that homologous recombination drives array assembly. Appropriately placed double-strand breaks stimulated homologous recombination during array formation. Our data indicate that the size of the assembled transgenic structures determines whether or not they will be maintained extrachromosomally or lost. We show that low copy number extrachromosomal transformation can be achieved by adjusting the relative concentration of DNA molecules in the injection mixture. Integration of the injected DNA, though relatively rare, was reproducibly achieved when single-stranded oligonucleotide was co-injected with the double-stranded DNA.
            • Record: found
            • Abstract: found
            • Article: not found

            Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans.

            Although many properties of the nervous system are shared among animals and systems, it is not known whether different neuronal circuits use common strategies to guide behaviour. Here we characterize information processing by Caenorhabditis elegans olfactory neurons (AWC) and interneurons (AIB and AIY) that control food- and odour-evoked behaviours. Using calcium imaging and mutations that affect specific neuronal connections, we show that AWC neurons are activated by odour removal and activate the AIB interneurons through AMPA-type glutamate receptors. The level of calcium in AIB interneurons is elevated for several minutes after odour removal, a neuronal correlate to the prolonged behavioural response to odour withdrawal. The AWC neuron inhibits AIY interneurons through glutamate-gated chloride channels; odour presentation relieves this inhibition and results in activation of AIY interneurons. The opposite regulation of AIY and AIB interneurons generates a coordinated behavioural response. Information processing by this circuit resembles information flow from vertebrate photoreceptors to 'OFF' bipolar and 'ON' bipolar neurons, indicating a conserved or convergent strategy for sensory information processing.
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map.

              Single nucleotide polymorphisms (SNPs) are valuable genetic markers of human disease. They also comprise the highest potential density marker set available for mapping experimentally derived mutations in model organisms such as Caenorhabditis elegans. To facilitate the positional cloning of mutations we have identified polymorphisms in CB4856, an isolate from a Hawaiian island that shows a uniformly high density of polymorphisms compared with the reference Bristol N2 strain. Based on 5.4 Mbp of aligned sequences, we predicted 6,222 polymorphisms. Furthermore, 3,457 of these markers modify restriction enzyme recognition sites ('snip-SNPs') and are therefore easily detected as RFLPs. Of these, 493 were experimentally confirmed by restriction digest to produce a snip-SNP map of the worm genome. A mapping strategy using snip-SNPs and bulked segregant analysis (BSA) is outlined. CB4856 is crossed into a mutant strain, and exclusion of CB4856 alleles of a subset of snip-SNPs in mutant progeny is assessed with BSA. The proximity of a linked marker to the mutation is estimated by the relative proportion of each form of the biallelic marker in populations of wildtype and mutant genomes. The usefulness of this approach is illustrated by the rapid mapping of the dyf-5 gene.

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                November 2010
                November 2010
                24 November 2010
                : 6
                : 11
                : e1001211
                Affiliations
                [1 ]Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
                [2 ]Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda, Kumamoto, Japan
                [3 ]Ernest Gallo Clinic and Research Center, Department of Neurology, Programs in Neuroscience and Biomedical Science, University of California San Francisco, San Francisco, California, United States of America
                University of California San Francisco, United States of America
                Author notes

                Conceived and designed the experiments: MF TI YO SLM. Performed the experiments: MF. Analyzed the data: MF. Contributed reagents/materials/analysis tools: MF TT TI. Wrote the paper: MF TI SLM.

                Article
                10-PLGE-RA-2768R2
                10.1371/journal.pgen.1001211
                2991246
                21124861
                541b418c-6e10-4f96-b9a5-46ea6f6edfd0
                Fujiwara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 March 2010
                : 19 October 2010
                Page count
                Pages: 16
                Categories
                Research Article
                Developmental Biology
                Genetics and Genomics
                Neuroscience/Sensory Systems

                Genetics
                Genetics

                Comments

                Comment on this article

                Related Documents Log