28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Optimizing oncolytic virotherapy in cancer treatment

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints

          Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses

            To guide the design of immunotherapy strategies for patients with early stage lung tumors, we developed a multiscale immune profiling strategy to map the immune landscape of early lung adenocarcinoma lesions to search for tumor-driven immune changes. Utilizing a barcoding method that allows a simultaneous single cell analysis of the tumor, non-involved lung and blood cells together with multiplex tissue imaging to assess spatial cell distribution, we provide a detailed immune cell atlas of early lung tumors. We show that stage I lung adenocarcinoma lesions already harbor significantly altered T cell and NK cell compartments. Moreover, we identified changes in tumor infiltrating myeloid cell (TIM) subsets that likely compromise anti-tumor T cell immunity. Paired single cell analyses thus offer valuable knowledge of tumor-driven immune changes, providing a powerful tool for the rational design of immune therapies. Comparing single tumor cells with adjacent normal tissue and blood from patients with lung adenocarcinoma charts early changes in tumor immunity and provides insights to guide immunotherapy design.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recurrent Glioblastoma Treated with Recombinant Poliovirus

              BACKGROUND The prognosis of patients with recurrent World Health Organization (WHO) grade IV malignant glioma is dismal, and there is currently no effective therapy. We conducted a dose-finding and toxicity study in this population of patients, evaluating convection-enhanced, intratumoral delivery of the recombinant nonpathogenic polio–rhinovirus chimera (PVSRIPO). PVSRIPO recognizes the poliovirus receptor CD155, which is widely expressed in neoplastic cells of solid tumors and in major components of the tumor microenvironment. METHODS We enrolled consecutive adult patients who had recurrent supratentorial WHO grade IV malignant glioma, confirmed on histopathological testing, with measurable disease (contrast-enhancing tumor of ≥1 cm and ≤5.5 cm in the greatest dimension). The study evaluated seven doses, ranging between 10 7 and 10 10 50% tissue-culture infectious doses (TCID 50 ), first in a dose-escalation phase and then in a dose-expansion phase. RESULTS From May 2012 through May 2017, a total of 61 patients were enrolled and received a dose of PVSRIPO. Dose level −1 (5.0×10 7 TCID 50 ) was identified as the phase 2 dose. One dose-limiting toxic effect was observed; a patient in whom dose level 5 (10 10 TCID 50 ) was administered had a grade 4 intracranial hemorrhage immediately after the catheter was removed. To mitigate locoregional inflammation of the infused tumor with prolonged glucocorticoid use, dose level 5 was deescalated to reach the phase 2 dose. In the dose-expansion phase, 19% of the patients had a PVSRIPO-related adverse event of grade 3 or higher. Overall survival among the patients who received PVSRIPO reached a plateau of 21% (95% confidence interval, 11 to 33) at 24 months that was sustained at 36 months. CONCLUSIONS Intratumoral infusion of PVSRIPO in patients with recurrent WHO grade IV malignant glioma confirmed the absence of neurovirulent potential. The survival rate among patients who received PVSRIPO immunotherapy was higher at 24 and 36 months than the rate among historical controls.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Drug Discovery
                Nat Rev Drug Discov
                Springer Science and Business Media LLC
                1474-1776
                1474-1784
                July 10 2019
                Article
                10.1038/s41573-019-0029-0
                31292532
                542687ba-142a-45b6-9896-883b9e896673
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article