30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Symbiophagy and biomineralization in the “living fossil” Astrosclera willeyana

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Representatives of all major metazoan lineages form biominerals. The molecular mechanisms that underlie this widespread and evolutionarily ancient ability are gradually being revealed for some lineages. However, until a wider range of metazoan biomineralization strategies are understood, the true diversity, and therefore the evolutionary origins of this process, will remain unknown. We have previously shown that the coralline demosponge, Astrosclera willeyana, in some way employs its endobiotic bacterial community to form its highly calcified skeleton. Here, using in situ hybridization and immunohistochemistry, we show that an ortholog of ATG8 (most likely a GABARAPL2/ GATE-16 ortholog) is expressed in cells that construct the individual skeletal elements of the sponge. In TEM sections sponge cells can be observed to contain extensive populations of bacteria, and frequently possesses double-membrane structures which we interpret to be autophagosomes. In combination with our previous work, these findings support the hypothesis that the host sponge actively degrades a proportion of its bacterial community using an autophagy pathway, and uses the prokaryotic organic remains as a framework upon which calcification of the sponge skeleton is initiated.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Guidelines for the use and interpretation of assays for monitoring autophagy.

          In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagosome formation: core machinery and adaptations.

            Eukaryotic cells employ autophagy to degrade damaged or obsolete organelles and proteins. Central to this process is the formation of autophagosomes, double-membrane vesicles responsible for delivering cytoplasmic material to lysosomes. In the past decade many autophagy-related genes, ATG, have been identified that are required for selective and/or nonselective autophagic functions. In all types of autophagy, a core molecular machinery has a critical role in forming sequestering vesicles, the autophagosome, which is the hallmark morphological feature of this dynamic process. Additional components allow autophagy to adapt to the changing needs of the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion.

              Autophagy involves de novo formation of double membrane-bound structures called autophagosomes, which engulf material to be degraded in lytic compartments. Atg8 is a ubiquitin-like protein required for this process in Saccharomyces cerevisiae that can be conjugated to the lipid phosphatidylethanolamine by a ubiquitin-like system. Here, we show using an in vitro system that Atg8 mediates the tethering and hemifusion of membranes, which are evoked by the lipidation of the protein and reversibly modulated by the deconjugation enzyme Atg4. Mutational analyses suggest that membrane tethering and hemifusion observed in vitro represent an authentic function of Atg8 in autophagosome formation in vivo. In addition, electron microscopic analyses indicate that these functions of Atg8 are involved in the expansion of autophagosomal membranes. Our results provide further insights into the mechanisms underlying the unique membrane dynamics of autophagy and also indicate the functional versatility of ubiquitin-like proteins.
                Bookmark

                Author and article information

                Journal
                Autophagy
                Autophagy
                AUTO
                Autophagy
                Landes Bioscience
                1554-8627
                1554-8635
                01 March 2014
                12 December 2013
                12 December 2013
                : 10
                : 3
                : 408-415
                Affiliations
                [1 ]Courant Research Centre Geobiology; Georg-August-University of Göttingen; Göttingen, Germany
                [2 ]Department of Earth and Environmental Sciences and GeoBioCenter LMU; Ludwig-Maximilians-Universität München; München, Germany
                [3 ]Bavarian State Collections of Palaeontology and Geology; München, Germany
                Author notes
                [* ]Correspondence to: Daniel J Jackson, Email: djackso@ 123456uni-goettingen.de
                Article
                2013AUTO0346R2 27319
                10.4161/auto.27319
                4077880
                24343243
                5426e3e4-6d3a-48cb-8174-bb13411f7814
                Copyright © 2014 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 13 June 2013
                : 14 November 2013
                : 22 November 2013
                Categories
                Basic Brief Report

                Molecular biology
                biomineralization,biocalcification,sponge,autophagy,symbiosis,symbiophagy,evolution,bacteria,gabarapl2/gate-16,atg8

                Comments

                Comment on this article